sp. nov., an actinobacterium isolated from landfill surface soil, and emended description of the genus Free

Abstract

A Gram-positive, non-endospore-forming bacterium, designated strain SK 18, was isolated from surface soil of a landfill site by dilution plating on trypticase soy broth agar. Preliminary characterization of strain SK 18 via biochemical tests, analysis of fatty acid methyl esters and partial 16S rRNA gene sequencing placed it within the genus . Analysis of the cell wall indicated that the peptidoglycan was of cross-linkage type B, containing the amino acids lysine and ornithine and with muramic acid in the -glycolyl form. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid and an unidentified glycolipid. The major fatty acids of the cell membrane were anteiso-C, anteiso-C and iso-C. These data further strengthened placement of the strain within the genus . Strain SK 18 shared highest 16S rRNA gene sequence similarity (97.2 %) with DSM 16931. Levels of similarity with the type strains of all other recognized species were less than 97.0 %. DNA–DNA hybridization experiments with strain SK 18 and its closest relative, DSM 16931, revealed a low reassociation value of 39.0 % (σ = 3.8 %). Moreover, strain SK 18 showed a number of differences in phenotypic characteristics (colony colour, catalase activity, hydrolysis of polymers, acid production from sugars and oxidation of various substrates), and its DNA G+C content was also higher than that of DSM 16931. These data indicated that strain SK 18 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SK 18 ( = MTCC 7185 = JCM 14034). An emended description of the genus is also provided.

Funding
This study was supported by the:
  • DBT
  • CSIR, Government of India
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033373-0
2012-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2187.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033373-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Bradbury J. F. 1992; The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium, and Microbacterium . In The Prokaryotes pp. 1355–1368 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H. Berlin: Springer;
    [Google Scholar]
  2. Collins M. D., Jones D., Kroppenstedt R. M. 1983; Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4:65–78 [View Article]
    [Google Scholar]
  3. Evtushenko L. I., Takeuchi M. 2006; The family Microbacteriaceae . In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol. 3 pp. 1020–1098 Edited by Dworkin M., Falkow S., Roenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  4. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  5. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [View Article][PubMed]
    [Google Scholar]
  6. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  7. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  8. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [View Article]
    [Google Scholar]
  9. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160[PubMed]
    [Google Scholar]
  10. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206 [View Article]
    [Google Scholar]
  11. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  12. Minnikin D. E., Patel V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [View Article]
    [Google Scholar]
  13. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Høst and Son;
    [Google Scholar]
  14. Pandey K. K., Mayilraj S., Chakrabarti T. 2002; Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 52:1559–1567 [View Article][PubMed]
    [Google Scholar]
  15. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [View Article]
    [Google Scholar]
  16. Reddy G. S. N., Aggarwal R. K., Matsumoto G. I., Shivaji S. 2000; Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561 [View Article][PubMed]
    [Google Scholar]
  17. Richert K., Brambilla E., Stackebrandt E. 2007; The phylogenetic significance of peptidoglycan types: molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16SrRNA genes. Syst Appl Microbiol 30:102–108 [View Article][PubMed]
    [Google Scholar]
  18. Rivas R., Trujillo M. E., Sánchez M., Mateos P. F., Martínez-Molina E., Velázquez E. 2004; Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra . Int J Syst Evol Microbiol 54:513–517 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [View Article]
    [Google Scholar]
  21. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  22. Schumann P., Rainey F. A., Burghardt J., Stackebrandt E., Weiss N. 1999; Reclassification of Brevibacterium oxydans (Chatelain and Second 1966) as Microbacterium oxydans comb. nov.. Int J Syst Bacteriol 49:175–177 [View Article][PubMed]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhard P., Murray G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  25. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  26. Takeuchi M., Hatano K. 1998a; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [View Article][PubMed]
    [Google Scholar]
  27. Takeuchi M., Hatano K. 1998b; Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov.. Int J Syst Bacteriol 48:973–982 [View Article][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  29. Tourova T. P., Antonov A. S. 1988; Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19:333–355 [View Article]
    [Google Scholar]
  30. Uchida K., Kudo T., Suzuki K. I., Nakase T. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56 [View Article][PubMed]
    [Google Scholar]
  31. Van de Peer Y., De Wachter R. 1997; Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230[PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033373-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033373-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed