1887

Abstract

Two Gram-reaction-negative, motile bacteria, designated strains MJ01 and MJ14, were isolated from sludge collected from the Daejeon sewage disposal plant in South Korea. The taxonomic positions of both strains were determined using a polyphasic approach. In phylogenetic analyses based on 16S rRNA gene sequences, strains MJ01 and MJ14 appeared indistinguishable and to be most closely related to members of the genus in the family of the (96.4–98.8 % sequence similarity). Strain MJ01 exhibited a relatively high level of DNA–DNA relatedness with strain MJ14 (89.3 %) but relatively low DNA–DNA relatedness values with established species in the genus (<60 %). The genomic DNA G+C contents of strains MJ01 and MJ14 were 65.3 and 64.8 mol%, respectively. The major respiratory quinone of both novel strains was the ubiquinone Q-8. The major fatty acids of both strains were iso-C, iso-C, iso-C and iso-Cω9, and the polar lipid profiles of the two strains contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and minor amounts of unidentified aminophospholipids and phospholipids. Based on the phenotypic, genotypic and phylogenetic evidence, strains MJ01 and MJ14 represent a single novel species in the genus , for which the name sp. nov. is proposed. The type strain is MJ01 ( = KCTC 22449 = JCM 16242), with MJ14 ( = KCTC 22460 = JCM 16243) as a reference strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033365-0
2012-12-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2815.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033365-0&mimeType=html&fmt=ahah

References

  1. An D.-S. , Lee H.-G. , Lee S.-T. , Im W.-T. . ( 2009; ). Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 59:, 691–694. [CrossRef] [PubMed]
    [Google Scholar]
  2. Atlas R. M. . ( 1993; ). Handbook of Microbiological Media. Edited by Parks L. C. . . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  3. Brinkman F. S. , Wan I. , Hancock R. E. , Rose A. M. , Jones S. J. . ( 2001; ). Phyloblast: facilitating phylogenetic analysis of blast results. . Bioinformatics 17:, 385–387. [CrossRef] [PubMed]
    [Google Scholar]
  4. Buck J. D. . ( 1982; ). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  5. Bui T. P. , Kim Y. J. , Kim H. , Yang D. C. . ( 2010; ). Rhodanobacter soli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60:, 2935–2939. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cappuccino J. G. , Sherman N. . ( 2002; ). Microbiology: a Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  7. Choi J. H. , Jung H. Y. , Kim H. S. , Cho H. G. . ( 2000; ). PhyloDraw: a phylogenetic tree drawing system. . Bioinformatics 16:, 1056–1058. [CrossRef] [PubMed]
    [Google Scholar]
  8. De Clercq D. , Van Trappen S. , Cleenwerck I. , Ceustermans A. , Swings J. , Coosemans J. , Ryckeboer J. . ( 2006; ). Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. . Int J Syst Evol Microbiol 56:, 1755–1759. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1985; ). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  12. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  13. Hiraishi A. , Ueda Y. , Ishihara J. , Mori T. . ( 1996; ). Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  14. Im W.-T. , Lee S.-T. , Yokota A. . ( 2004; ). Rhodanobacter fulvus sp. nov., a β-galactosidase-producing gammaproteobacterium. . J Gen Appl Microbiol 50:, 143–147. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim M. K. , Im W.-T. , Ohta H. , Lee M. , Lee S.-T. . ( 2005; ). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria . . J Microbiol 43:, 152–157.[PubMed]
    [Google Scholar]
  16. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. , Yi H. , Won S. , Chun J. . ( 2012; ). Introducing EzTaxon‐e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  18. Kumar S. , Tamura K. , Nei M. . ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kuykendall L. D. , Roy M. A. , O’Neill J. J. , Devine T. E. . ( 1988; ). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  20. Lee C. S. , Kim K. K. , Aslam Z. , Lee S. T. . ( 2007; ). Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. . Int J Syst Evol Microbiol 57:, 1775–1779. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mergaert J. , Cnockaert M. C. , Swings J. . ( 2002; ). Fulvimonas soli gen. nov., sp. nov., a γ-proteobacterium isolated from soil after enrichment on acetylated starch plastic. . Int J Syst Evol Microbiol 52:, 1285–1289. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  23. Minnikin D. E. , Patel P. V. , Alshamaony L. , Goodfellow M. . ( 1977; ). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  24. Nalin R. , Simonet P. , Vogel T. M. , Normand P. . ( 1999; ). Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. . Int J Syst Bacteriol 49:, 19–23. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
    [Google Scholar]
  27. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  28. Ten L. N. , Im W.-T. , Kim M.-K. , Kang M.-S. , Lee S.-T. . ( 2004; ). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. . J Microbiol Methods 56:, 375–382. [CrossRef] [PubMed]
    [Google Scholar]
  29. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  30. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  31. Weon H. Y. , Kim B. Y. , Hong S. B. , Jeon Y. A. , Kwon S. W. , Go S. J. , Koo B. S. . ( 2007; ). Rhodanobacter ginsengisoli sp. nov. and Rhodanobacter terrae sp. nov., isolated from soil cultivated with Korean ginseng. . Int J Syst Evol Microbiol 57:, 2810–2813. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033365-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033365-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error