1887

Abstract

Strain MJ31, a Gram-reaction-positive, aerobic, rod-shaped, non-motile bacterium, was isolated from a sludge sample collected at the Daejeon sewage-disposal plant, in South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MJ31 belonged to the genus , appearing most closely related to KSL-104 (98.6 % sequence similarity), DSM 20641 (97.6 %), MDN22 (97.2 %) and MSL-22 (97.0 %). The chemotaxonomic properties of strain MJ31 were consistent with those of the genus : MK-8(H) was the predominant menaquinone, iso-C, iso-C and Cω9 were the predominant cellular fatty acids, and the cell-wall peptidoglycan was based on -2,6-diaminopimelic acid. The genomic DNA G+C content of strain MJ31 was 71.2 mol%. Some differential phenotypic properties and low DNA–DNA relatedness values (<28 %) with the type strains of closely related species indicated that strain MJ31 represents a novel species, for which the name sp. nov. is proposed. The type strain is MJ31 ( = KCTC 19772 = JCM 16922).

Funding
This study was supported by the:
  • GAIA Project (Award 173-101-034)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033308-0
2012-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1199.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033308-0&mimeType=html&fmt=ahah

References

  1. Brinkman F. S., Wan I., Hancock R. E., Rose A. M., Jones S. J. 2001; Phyloblast: facilitating phylogenetic analysis of blast results. Bioinformatics 17:385–387 [View Article][PubMed]
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  3. Cappuccino J. G., Sherman N. 2002 Microbiology: a Laboratory Manual, 6th edn. Menlo Park, CA: Benjamin Cummings;
    [Google Scholar]
  4. Choi J. H., Jung H. Y., Kim H. S., Cho H. G. 2000; PhyloDraw: a phylogenetic tree drawing system. Bioinformatics 16:1056–1058 [View Article][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [View Article]
    [Google Scholar]
  10. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria . J Microbiol 43:152–157[PubMed]
    [Google Scholar]
  11. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  15. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [View Article]
    [Google Scholar]
  16. Moore D. D., Dowhan D. 1995; Preparation and Analysis of DNA. In Current Protocols in Molecular Biology pp. 2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  17. O’Donnell A. G., Goodfellow M., Minnikin D. E. 1982; Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) Lochhead in the genus Nocardioides (Prauser) emend. O’Donnell et al. as Nocardioides simplex comb. nov.. Arch Microbiol 133:323–329 [View Article][PubMed]
    [Google Scholar]
  18. Prauser H. 1976; Nocardioides, a new genus of the order Actinomycetales . Int J Syst Bacteriol 26:58–65 [View Article]
    [Google Scholar]
  19. Prauser H. 1984; Nocardioides luteus spec. nov.. Z Allg Mikrobiol 24:647–648 [View Article]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  22. Suzuki K., Komagata K. 1983; Pimelobacter gen. nov., a new genus of coryneform bacteria with ll-diaminopimelic acid in the cell wall. J Gen Appl Microbiol 29:59–71 [View Article]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  25. Yamamura H., Ohkubo S. Y., Nakagawa Y., Ishida Y., Hamada M., Otogturo M., Tamura T., Hayakawa M. 2011; Nocardioides iriomotensis sp. nov., an actinobacterium isolated from a forest soil. Int J Syst Evol Microbiol 61:2205–2209[PubMed] [CrossRef]
    [Google Scholar]
  26. Yoon J. H., Lee C. H., Oh T. K. 2005; Nocardioides dubius sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol 55:2209–2212 [View Article][PubMed]
    [Google Scholar]
  27. Yoon J. H., Park S., Jang S. J., Lee J. S., Lee K. C., Oh T. K. 2010; Nocardioides daedukensis sp. nov., a halotolerant bacterium isolated from soil. Int J Syst Evol Microbiol 60:1334–1338 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033308-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033308-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error