1887

Abstract

Five strains (CAIM 1831, CAIM 1832, CAIM 1833, CAIM 1834 and CAIM 1836) were isolated from cultured sole () in two regions of Spain, two strains (CAIM 404 and CAIM 1294) from wild-caught spotted rose snapper () in Mexico, and one strain (CAIM 1835) from corals in Brazil. The 16S rRNA gene sequences of the novel isolates showed similarity to (98.2–98.3 %, GenBank accession no. AJ630103) and to a lesser degree to (97.2–97.3 %, X76336) and to (96.9–97.1 %, X74703). Multilocus sequence analysis clustered these strains closely together and clearly separated them from phylogenetically related species of the genus . Genomic fingerprinting by rep-PCR clustered the novel strains according to their geographical origin. Phenotypic analyses showed a large variation among the new strains, but many tests enabled them to be differentiated from other species of the genus . The mean Δ values between the strains analysed here and closely related type strains were above 6.79 °C. The values between the novel isolates were below 2.35 °C, well outside the limit suggested for the delineation of a bacterial species. The phenotypic and genotypic data presented here clearly place these new strains as a coherent group within the genus , for which we propose the name sp. nov. with CAIM 1831 ( = DSM 24595 = S277) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033191-0
2012-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2955.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033191-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brenner D. J. , Hickman-Brenner F. W. , Lee J. V. , Steigerwalt A. G. , Fanning G. R. , Hollis D. G. , Farmer J. J. III , Weaver R. E. , Joseph S. W. , Seidler R. J. . ( 1983; ). Vibrio furnissii (formerly aerogenic biogroup of Vibrio fluvialis), a new species isolated from human feces and the environment. . J Clin Microbiol 18:, 816–824.[PubMed]
    [Google Scholar]
  3. Chimetto L. A. , Brocchi M. , Gondo M. , Thompson C. C. , Gomez-Gil B. , Thompson F. L. . ( 2009; ). Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). . J Appl Microbiol 106:, 1818–1826. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chimetto L. A. , Cleenwerck I. , Moreira A. P. , Brocchi M. , Willems A. , De Vos P. , Thompson F. L. . ( 2011; ). Vibrio variabilis sp. nov. and Vibrio maritimus sp. nov., isolated from Palythoa caribaeorum. . Int J Syst Evol Microbiol 61:, 3009–3015. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  6. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Denner E. B. M. , Vybiral D. , Fischer U. R. , Velimirov B. , Busse H. J. . ( 2002; ). Vibrio calviensis sp. nov., a halophilic, facultatively oligotrophic 0.2 µm-filterable marine bacterium. . Int J Syst Evol Microbiol 52:, 549–553.[PubMed] [CrossRef]
    [Google Scholar]
  8. Farmer J. J. , Janda J. M. , Brenner F. W. , Cameron D. N. , Birkhead K. M. . ( 2005; ). Vibrio . . In Bergey's Manual of Systematic Bacteriology, , 2nd edn., pp. 494–546. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. . . New York:: Springer;.
    [Google Scholar]
  9. Gomez-Gil B. , Tron-Mayen L. , Roque A. , Turnbull J. F. , Inglis V. , Guerra-Flores A. L. . ( 1998; ). Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei . . Aquaculture 163:, 1–9. [CrossRef]
    [Google Scholar]
  10. Gomez-Gil B. , Soto-Rodríguez S. , García-Gasca A. , Roque A. , Vazquez-Juarez R. , Thompson F. L. , Swings J. . ( 2004; ). Molecular identification of Vibrio harveyi-related isolates associated with diseased aquatic organisms. . Microbiology 150:, 1769–1777. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gomez-Gil B. , Fajer-Avila E. , García-Vargas F. . ( 2007; ). Vibrios of the spotted rose snapper Lutjanus guttatus Steindachner, 1869 from northwestern Mexico. . J Appl Microbiol 102:, 1518–1526. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gomez-Gil B. , Roque A. , Lacuesta B. , Rotllant G. . ( 2010; ). Diversity of vibrios in the haemolymph of the spider crab Maja brachydactyla . . J Appl Microbiol 109:, 918–926. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gomez-Gil B. , Roque A. , Rotllant G. , Peinado L. , Romalde J. L. , Doce A. , Cabanillas-Beltrán H. , Chimetto L. A. , Thompson F. L. . ( 2011; ). Photobacterium swingsii sp. nov., isolated from marine organisms. . Int J Syst Evol Microbiol 61:, 315–319. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gonzalez J. M. , Saiz-Jimenez C. . ( 2005; ). A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. . Extremophiles 9:, 75–79. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hada H. S. , West P. A. , Lee J. V. , Stemmler J. , Colwell R. R. . ( 1984; ). Vibrio tubiashii sp. nov., a pathogen of bivalve mollusks. . Int J Syst Bacteriol 34:, 1–4. [CrossRef]
    [Google Scholar]
  16. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  17. Kosman E. , Leonard K. J. . ( 2005; ). Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. . Mol Ecol 14:, 415–424. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lee J. V. , Shread P. , Furniss A. L. , Bryant T. N. . ( 1981; ). Taxonomy and description of Vibrio fluvialis sp. nov. (synonym group F vibrios, group EF6). . J Appl Bacteriol 50:, 73–94. [CrossRef] [PubMed]
    [Google Scholar]
  19. Macián M. C. , Ludwig W. , Aznar R. , Grimont P. A. D. , Schleifer K. H. , Garay E. , Pujalte M. J. . ( 2001; ). Vibrio lentus sp. nov., isolated from Mediterranean oysters. . Int J Syst Evol Microbiol 51:, 1449–1456.[PubMed] [CrossRef]
    [Google Scholar]
  20. Macián M. C. , Garay E. , Grimont P. A. D. , Pujalte M. J. . ( 2004; ). Vibrio ponticus sp. nov., a neighbour of V. fluvialis–V. furnissii clade, isolated from gilthead sea bream, mussels and seawater. . Syst Appl Microbiol 27:, 535–540. [CrossRef] [PubMed]
    [Google Scholar]
  21. Moreira A. P. , Pereira N. Jr , Thompson F. L. . ( 2011; ). Usefulness of a real-time PCR platform for G+C content and DNA–DNA hybridization estimations in vibrios. . Int J Syst Evol Microbiol 61:, 2379–2383. [CrossRef] [PubMed]
    [Google Scholar]
  22. Rameshkumar N. , Fukui Y. , Sawabe T. , Nair S. . ( 2008; ). Vibrio porteresiae sp. nov., a diazotrophic bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 58:, 1608–1615. [CrossRef] [PubMed]
    [Google Scholar]
  23. Roque A. , Molina-Aja A. , Bolán-Mejía C. , Gomez-Gil B. . ( 2001; ). In vitro susceptibility to 15 antibiotics of vibrios isolated from penaeid shrimps in Northwestern Mexico. . Int J Antimicrob Agents 17:, 383–387. [CrossRef] [PubMed]
    [Google Scholar]
  24. Rosselló-Mora R. , Amann R. . ( 2001; ). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC News 20:, 16.
    [Google Scholar]
  26. Sawabe T. , Kita-Tsukamoto K. , Thompson F. L. . ( 2007; ). Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. . J Bacteriol 189:, 7932–7936. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  28. Thompson F. L. , Gomez-Gil B. , Vasconcelos A. T. , Sawabe T. . ( 2007; ). Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. . Appl Environ Microbiol 73:, 4279–4285. [CrossRef] [PubMed]
    [Google Scholar]
  29. Thompson F. L. , Thompson C. C. , Hoste B. , Vandemeulebroecke K. , Gullian M. , Swings J. . ( 2003; ). Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. . Int J Syst Evol Microbiol 53:, 1495–1501. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tindall B. J. , Rosselló-Móra R. , Busse H. J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  31. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  32. Yang Y. , Yeh L. , Cao Y. , Baumann L. , Baumann P. , Tang J. S. , Beaman B. . ( 1983; ). Characterization of marine luminous bacteria isolated off the coast of China and description of Vibrio orientalis sp. nov.. Curr Microbiol 8:, 95–100. [CrossRef]
    [Google Scholar]
  33. Zhang Z. , Schwartz S. , Wagner L. , Miller W. . ( 2000; ). A greedy algorithm for aligning DNA sequences. . J Comput Biol 7:, 203–214. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033191-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033191-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error