1887

Abstract

Strain EB21 was isolated from a brine sample from Aran-Bidgol salt lake, a saline playa in Iran. Strain EB21 was an orange–red-pigmented, motile rod and required at least 2 M NaCl but not MgCl for growth. Optimal growth was achieved at 3.5 M NaCl and 0.2 M MgCl. The optimum pH and temperature for growth were pH 7.5 and 40 °C, while it was able to grow at pH 6.0–8.0 and 25–55 °C. Analysis of the 16S rRNA gene sequence revealed that strain EB21 is a member of the family , showing low levels of similarity to other members of the family. The highest sequence similarities, 91.8, 91.7 and 91.5 %, were obtained with the 16S rRNA gene sequences of the type strains of , and , respectively. Polar lipid analyses revealed that strain EB21 contains phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate. Three unidentified glycolipids and one minor phospholipid were also observed. The only quinone present was MK-8(II-H). The GC content of its DNA was 67.7 mol%. On the basis of the data obtained, the new isolate could not be classified in any recognized genus. Strain EB21 is thus considered to represent a novel species in a new genus within the family , order , for which the name gen. nov., sp. nov. is proposed. The type strain of is EB21 ( = IBRC-M 10013  = KCTC 4048).

Funding
This study was supported by the:
  • Iranian Biological Resource Center (IBRC) (Award MI-1388-01)
  • International Foundation for Science (IFS) (Award A/4527-1)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033167-0
2012-05-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1021.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033167-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791[PubMed]
    [Google Scholar]
  2. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328[PubMed]
    [Google Scholar]
  3. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  4. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  5. Dyall-Smith M. L. 2006 The Halohandbook: Protocols for Haloarchaeal Genetics http://www.haloarchaea.com/resources/halohandbook
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using bootstrap. Int J Org Evol 39:783–791 [View Article]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  8. González C., Gutiérrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  9. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Order I. Halobacteriales Grant and Larsen 1989b, 495VP (effective publication: Grant and Larsen 1989a, 2216). In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 1 pp. 294–299 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  10. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517[PubMed]
    [Google Scholar]
  11. Hezayen F. F., Rehm B. H. A., Tindall B. J., Steinbüchel A. 2001; Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 51:1133–1142 [View Article][PubMed]
    [Google Scholar]
  12. Hezayen F. F., Tindall B. J., Steinbüchel A., Rehm B. H. A. 2002; Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov.. Int J Syst Evol Microbiol 52:2271–2280 [View Article][PubMed]
    [Google Scholar]
  13. Kamekura M., Dyall-Smith M. L. 1995; Taxonomy of the family Halobacteriaceae and description of two new genera Halorubrobacterium and Natrialba . J Gen Appl Microbiol 41:333–350 [View Article]
    [Google Scholar]
  14. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [View Article][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  16. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  17. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Tamura K., Dudley J., Nei M., Kumar S. 2004; mega4: molecular evolutionary genetics analysis mega software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. J. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882 [View Article]
    [Google Scholar]
  22. Ventosa A., Gutiérrez M. C., Kamekura M., Dyall-Smith M. L. 1999; Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov.. Int J Syst Bacteriol 49:131–136 [View Article][PubMed]
    [Google Scholar]
  23. Wainø M., Tindall B. J., Ingvorsen K. 2000; Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190 [View Article][PubMed]
    [Google Scholar]
  24. Xue Y., Fan H., Ventosa A., Grant W. D., Jones B. E., Cowan D. A., Ma Y. 2005; Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int J Syst Evol Microbiol 55:2501–2505 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.033167-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033167-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error