1887

Abstract

A novel anaerobic, moderately thermophilic bacterium (strain SGL43) was isolated from Severo-Stavropolskoye underground gas storage reservoir (Russia). Cells of strain SGL43 were motile straight rods, 0.4 µm in diameter and 2.0–3.0 µm in length. The temperature range for growth was 28–65 °C, with optimum growth at 50 °C. The pH range for growth was 5.5–8.0, with optimum growth at pH 7.0–7.5. Growth of strain SGL43 was observed at NaCl concentrations of 0–4.0 % (w/v) with optimum growth at 1.0 % (w/v) NaCl. Substrates utilized by strain SGL43 included peptone, yeast extract, glucose, fructose, maltose, galactose, pyruvate and citrate. Products of glucose or citrate fermentation were acetate, hydrogen and CO. Thiosulfate was reduced to sulfide. The DNA G+C content of strain SGL43 was 43.1 mol%. 16S rRNA gene sequence analysis revealed that strain SGL43 belongs to the order (phylum ‘’). The closest relative of strain SGL43 was (86.2 % 16S rRNA gene sequence similarity with the type strain). Based on the data presented here, strain SGL43 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of , the type species of the genus, is SGL43 ( = DSM 23830 = VKM B-2670).

Funding
This study was supported by the:
  • Russian Foundation for Basic Research (Award 09-04-00251-a)
  • Federal Agency of Science and Innovations (Award 02.740.11.0077)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033076-0
2012-07-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1543.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033076-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Balk M., van Gelder T., Weelink S. A., Stams A. J. M. 2008; (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl Environ Microbiol 74:403–409 [View Article][PubMed]
    [Google Scholar]
  3. Basso O., Lascourreges J.-F., Le Borgne F., Le Goff C., Magot M. 2009; Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. Res Microbiol 160:107–116 [View Article][PubMed]
    [Google Scholar]
  4. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [View Article][PubMed]
    [Google Scholar]
  5. Cann I. K. O., Stroot P. G., Mackie K. R., White B. A., Mackie R. I. 2001; Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium . Int J Syst Evol Microbiol 51:293–302[PubMed]
    [Google Scholar]
  6. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  7. Euzéby J. P. 2011; List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr..
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Ivanova A. E., Borzenkov I. A., Tarasov A. L., Milekhina E. I., Beliaev S. S. 2007; A microbiological study of an underground gas storage in the process of gas injection. Microbiology 76:515–523 (English translation of Mikrobiologiia) [PubMed]
    [Google Scholar]
  10. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  11. Lee Y. E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus . Int J Syst Bacteriol 43:41–51 [View Article]
    [Google Scholar]
  12. Lee Y. J., Mackie R. I., Cann I. K. O., Wiegel J. 2008; Description of Caldanaerobius fijiensis gen. nov., sp. nov., an inulin-degrading, ethanol-producing, thermophilic bacterium from a Fijian hot spring sediment, and reclassification of Thermoanaerobacterium polysaccharolyticum and Thermoanaerobacterium zeae as Caldanaerobius polysaccharolyticus comb. nov. and Caldanaerobius zeae comb. nov.. Int J Syst Evol Microbiol 58:666–670 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  14. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc..
    [Google Scholar]
  15. Slobodkin A., Reysenbach A.-L., Strutz N., Dreier M., Wiegel J. 1997; Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547 [View Article][PubMed]
    [Google Scholar]
  16. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K., Nei M., Kumar S. 2004; Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  19. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. 2007; Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267 [View Article][PubMed]
    [Google Scholar]
  20. Wiegel J. 2009; Thermoanaerobacterales ord. nov. In Bergey’s Manual of Systematic Bacteriology vol. 3 p. 1224 Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman B. New York: Springer;
    [Google Scholar]
  21. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  22. Yamamoto K., Murakami R., Takamura Y. 1998; Isoprenoid quinone, cellular fatty acid composition and diaminopimelic acid isomers of newly classified thermophilic anaerobic Gram-positive bacteria. FEMS Microbiol Lett 161:351–358 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.033076-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033076-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error