Reclassification of type A strains as sp. nov. Free

Abstract

is a well-studied legume symbiont characterized by high genetic stability of the symbiotic plasmid and tolerance to tropical environmental stresses such as high temperature and low soil pH. However, high phenetic and genetic variabilities among strains have been largely reported, with two subgroups, designated type A and B, already defined within the species. A polyphasic study comprising multilocus sequence analysis, phenotypic and genotypic characterizations, including DNA–DNA hybridization, strongly supported the reclassification of type A strains as a novel species. Type A strains formed a well-differentiated clade that grouped with , , , and in the phylogenies of the 16S rRNA, , , , and genes. Several phenotypic traits differentiated type A strains from all related taxa. The novel species, for which the name sp. nov. is proposed, is a broad host range rhizobium being able to establish effective root-nodule symbioses with , , common beans () and . Strain CFN 299 ( = USDA 9039 = LMG 9517 = CECT 4844 = JCM 21088 = IAM 14230 = SEMIA 4083 = CENA 183 = UMR1026 = CNPSo 141) is designated the type strain of sp. nov.

Funding
This study was supported by the:
  • CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), MCT/MAPA (Award 577933/2008)
  • CNPq-Universal (Award 470162/2009-0)
  • Repensa (Award 562008/2010-1)
  • PAPIIT (Award IN200709)
  • Fundação Araucária
  • CNPq (Award 300698/2007-0)
  • CONACYT
  • CNPq/CONACYT (Award 490048/2009-9)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032912-0
2012-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1179.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032912-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Wagner M. 2008; Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440[PubMed]
    [Google Scholar]
  2. Acosta-Durán C., Martínez-Romero E. 2002; Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici . Arch Microbiol 178:161–164 [View Article][PubMed]
    [Google Scholar]
  3. Amarger N., Bours M., Revoy F., Allard M. R., Laguerre G. 1994; Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant Soil 161:147–156 [View Article]
    [Google Scholar]
  4. Amarger N., Macheret V., Laguerre G. 1997; Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006 [View Article][PubMed]
    [Google Scholar]
  5. Anyango B., Wilson K. J., Beynon J. L., Giller K. E. 1995; Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Appl Environ Microbiol 61:4016–4021[PubMed]
    [Google Scholar]
  6. Bouzar H., Jones J. B., Hodge N. G. 1993; Differential characterization of Agrobacterium species using carbon-source utilization patterns and fatty acid profiles. Phytopathology 83:733–739 [View Article]
    [Google Scholar]
  7. Brenner D. J., Hickman-Brenner F. W., Lee J. V., Steigerwalt A. G., Fanning G. R., Hollis D. G., Farmer J. J. III, Weaver R. E., Joseph S. W., Seidler R. J. 1983; Vibrio furnissii (formerly aerogenic biogroup of Vibrio fluvialis), a new species isolated from human feces and the environment. J Clin Microbiol 18:816–824[PubMed]
    [Google Scholar]
  8. Coenye T., Gevers D., Van de Peer Y., Vandamme P., Swings J. 2005; Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167[PubMed]
    [Google Scholar]
  9. Diouf A., de Lajudie P., Neyra M., Kersters K., Gillis M., Martínez-Romero E., Gueye M. 2000; Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int J Syst Evol Microbiol 50:159–170 [View Article][PubMed]
    [Google Scholar]
  10. Geniaux E., Flores M., Palacios R., Martínez E. 1995; Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. Int J Syst Bacteriol 45:392–394 [View Article]
    [Google Scholar]
  11. Grange L., Hungria M. 2004; Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biol Biochem 36:1389–1398 [View Article]
    [Google Scholar]
  12. Gu C. T., Wang E. T., Tian C. F., Han T. X., Chen W. F., Sui X. H., Chen W. X. 2008; Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368 [View Article][PubMed]
    [Google Scholar]
  13. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 [View Article][PubMed]
    [Google Scholar]
  14. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  15. Han T. X., Wang E. T., Wu L. J., Chen W. F., Gu J. G., Gu C. T., Tian C. F., Chen W. X. 2008; Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699 [View Article][PubMed]
    [Google Scholar]
  16. Harrison P. W., Lower R. P. J., Kim N. K. D., Young J. P. W. 2010; Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18:141–148 [View Article][PubMed]
    [Google Scholar]
  17. Hernández-Lucas I., Rogel-Hernández M. A., Segovia L., Rojas-Jiménez K., Martínez-Romero E. 2004; Phylogenetic relationships of rhizobia based on citrate synthase gene sequences. Syst Appl Microbiol 27:703–706 [View Article][PubMed]
    [Google Scholar]
  18. Hungria M., Andrade D. S., Chueire L. M. O., Probanza A., Guttierrez-Mañero F. J., Megías M. 2000; Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528 [View Article]
    [Google Scholar]
  19. Hungria M., Campo R., Mendes I. 2003; Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39:88–93 [View Article]
    [Google Scholar]
  20. Kaschuk G., Hungria M., Andrade D. S., Campo R. J. 2006; Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 32:210–220 [View Article]
    [Google Scholar]
  21. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A. 2007; Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503 [View Article][PubMed]
    [Google Scholar]
  22. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426 [View Article][PubMed]
    [Google Scholar]
  23. Mercante F. M., Cunha C. O., Straliotto R., Ribeiro-Junior W. Q., Vanderleyden J., Franco A. A. 1998; Leucaena leucocephala as a trap-host for Rhizobium tropici strains from the Brazilian “Cerrado” region. Rev Microbiol 29:49–58
    [Google Scholar]
  24. Moreira A. P., Pereira N. Jr, Thompson F. L. 2011; Usefulness of a real time PCR platform for GC content and DNA-DNA hybridization similarity estimations in vibrios. Int J Syst Evol Microbiol 61:2379–2383[PubMed] [CrossRef]
    [Google Scholar]
  25. Musser J. M., Bemis D. A., Ishikawa H., Selander R. K. 1987; Clonal diversity and host distribution in Bordetella bronchiseptica . J Bacteriol 169:2793–2803[PubMed]
    [Google Scholar]
  26. Pinto F. G. S., Hungria M., Martins Mercante F. 2007; Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biol Biochem 39:1851–1864 [View Article]
    [Google Scholar]
  27. Posada D. 2008; jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256 [View Article][PubMed]
    [Google Scholar]
  28. Ribeiro R. A., Barcellos F. G., Thompson F. L., Hungria M. 2009; Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 160:297–306 [View Article][PubMed]
    [Google Scholar]
  29. Rincón-Rosales R., Lloret L., Ponce E., Martínez-Romero E. 2009; Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum . FEMS Microbiol Ecol 67:103–117 [View Article][PubMed]
    [Google Scholar]
  30. Sawada H., Ieki H. 1992; Phenotypic characteristics of the genus Agrobacterium . Ann Phytopathol Soc Japan 58:37–45 [View Article]
    [Google Scholar]
  31. Selander R. K., McKinney R. M., Whittam T. S., Bibb W. F., Brenner D. J., Nolte F. S., Pattison P. E. 1985; Genetic structure of populations of Legionella pneumophila . J Bacteriol 163:1021–1037[PubMed]
    [Google Scholar]
  32. Taboada H., Encarnacion S., Vargas M. D. C., Mora Y., Martinez-Romero E., Mora J. 1996; Glutamine synthetase II constitutes a novel taxonomic marker in Rhizobium etli and other Rhizobium species. Int J Syst Bacteriol 46:485–491 [View Article]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  34. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801 [View Article][PubMed]
    [Google Scholar]
  35. Valverde A., Igual J. M., Peix A., Cervantes E., Velázquez E. 2006; Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris . Int J Syst Evol Microbiol 56:2631–2637 [View Article][PubMed]
    [Google Scholar]
  36. van Berkum P., Navarro R. B., Vargas A. A. 1994; Classification of the uptake hydrogenase-positive (Hup+) bean rhizobia as Rhizobium tropici . Appl Environ Microbiol 60:554–561[PubMed]
    [Google Scholar]
  37. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438[PubMed]
    [Google Scholar]
  38. Velázquez E., Palomo J. L., Rivas R., Guerra H., Peix A., Trujillo M. E., García-Benavides P., Mateos P. F., Wabiko H., Martínez-Molina E. 2010; Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes . Syst Appl Microbiol 33:247–251 [View Article][PubMed]
    [Google Scholar]
  39. Vincent J. M. 1970; The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria pp. 1–13 Edited by Vincent J. M. Oxford: Blackwell Scientific;
    [Google Scholar]
  40. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43:305–313 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032912-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032912-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed