1887

Abstract

A cellulose-degrading bacterium, strain FCN3-3, was isolated from buffalo faeces collected in Nakhonnayok province, Thailand. The strain was characterized based on its phenotypic and genotypic characteristics. Strain FCN3-3 was a Gram-positive, aerobic, spore-forming, rod-shaped bacterium. It contained -diaminopimelic acid in cell-wall peptidoglycan. The major menaquinone was MK-7. Anteiso-C (52.5 %), iso-C (18.9 %) and C (9.1 %) were the predominant cellular fatty acids, and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol were the major phospholipids. The DNA G+C content was 58.0 mol%. Phylogenetic analysis using 16S rRNA gene sequences showed that strain FCN3-3 was affiliated to the genus and was closely related to GSPC1, HY-22R and HKU3, with 97.2, 96.8 and 96.3 % sequence similarity, respectively. Strain FCN3-3 could be clearly distinguished from all known species of the genus by its physiological and biochemical characteristics as well as its phylogenetic position and level of DNA–DNA relatedness. Therefore, the strain represents a novel species of the genus for which the name sp. nov. is proposed; the type strain is FCN3-3 ( = KCTC 13645 = TISTR 1996 = PCU 323).

Funding
This study was supported by the:
  • Royal Golden Jubilee PhD Program
  • KRIBB Research Initiative Program
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032607-0
2012-08-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1921.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032607-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  2. Cai F., Wang Y., Qi H., Dai J., Yu B., An H., Rahman E., Fang C. 2010; Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 60:1605–1608 [View Article][PubMed]
    [Google Scholar]
  3. Cho E. A., Lee J.-S., Lee K. C., Jung H. C., Pan J. G., Pyun Y. R. 2007; Cohnella laeviribosi sp. nov., isolated from a volcanic pond. Int J Syst Evol Microbiol 57:2902–2907 [View Article][PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  6. García-Fraile P., Velázquez E., Mateos P. F., Martínez-Molina E., Rivas R. 2008; Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella . Int J Syst Evol Microbiol 58:1855–1859 [View Article][PubMed]
    [Google Scholar]
  7. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:781–786 [View Article][PubMed]
    [Google Scholar]
  8. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J. S. 2010a; Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 60:2284–2287 [View Article][PubMed]
    [Google Scholar]
  9. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J. S. 2010b; Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 60:2913–2917 [View Article][PubMed]
    [Google Scholar]
  10. Kim S.-J., Weon H.-Y., Kim Y.-S., Anandham R., Jeon Y.-A., Hong S.-B., Kwon S.-W. 2010; Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 60:526–530 [View Article][PubMed]
    [Google Scholar]
  11. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  12. Luo X., Wang Z., Dai J., Zhang L., Fang C. 2010; Cohnella damensis sp. nov., a motile xylanolytic bacteria isolated from a low altitude area in Tibet. J Microbiol Biotechnol 20:410–414[PubMed]
    [Google Scholar]
  13. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [View Article]
    [Google Scholar]
  14. Ruijssenaars H. J., Hartmans S. 2001; Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol 55:143–149 [View Article][PubMed]
    [Google Scholar]
  15. Saito H., Miura K. I. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  17. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  18. Shiratori H., Tagami Y., Beppu T., Ueda K. 2010; Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 60:1344–1348 [View Article][PubMed]
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  20. Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y. 2004; Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 50:159–167 [View Article][PubMed]
    [Google Scholar]
  21. Teather R. M., Wood P. J. 1982; Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780[PubMed]
    [Google Scholar]
  22. Teng J. L. L., Woo P. C. Y., Leung K. W., Lau S. K. P., Wong M. K. M., Yuen K. Y. 2003; Pseudobacteraemia in a patient with neutropenic fever caused by a novel paenibacillus species: Paenibacillus hongkongensis sp. nov.. Mol Pathol 56:29–35 [View Article][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.032607-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032607-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error