sp. nov., isolated from a human clinical specimen Free

Abstract

A Gram-negative, rod-shaped, non-spore-forming bacterium (strain CCUG 43427A) was isolated from a patient suffering from endophthalmitis and its taxonomic position was studied. 16S rRNA gene sequence analysis indicated that this strain was a member of the genus Strain CCUG 43427A was most closely related to the type strains of (97.4 % 16S rRNA gene sequence similarity) and (97.2 %); levels of similarity to the type strains of all other recognized species were below 97.0 %. Chemotaxonomic data [Q-8 as major ubiquinone; phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as major polar lipids; and summed feature 3 (Cω7 and/or iso-C 2-OH), C, Cω7, C and C 3-OH as major fatty acids] supported the affiliation of the isolate to the genus . Levels of DNA–DNA relatedness of strain CCUG 43427A with CCUG 45783 and AP13 were 60.6 % (reciprocal, 55.8 %) and 58.1 % (reciprocal, 34.0 %), respectively. Strain CCUG 43427A could be differentiated from its closest phylogenetic neighbours based on a range of phenotypic characteristics. Strain CCUG 43427A is therefore considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CCUG 43427A ( = CCM 7900).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032441-0
2012-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/2/364.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032441-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [View Article]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  3. Gallego V., Sánchez-Porro C., García M. T., Ventosa A. 2006; Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2449–2453 [View Article][PubMed]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  7. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article]
    [Google Scholar]
  8. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P., Falsen E., Busse H.-J. 2008; Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter . Int J Syst Evol Microbiol 58:1680–1684 [View Article][PubMed]
    [Google Scholar]
  10. Kämpfer P., Lodders N., Martin K., Falsen E. 2011; A revision of Massilia La Scola et al. 2000, with an emended description of the genus, and the inclusion of all species of the genus Naxibacter as new combinations and a proposal of Massilia consociata sp. nov.. Int J Syst Evol Microbiol 61:1528–1533 [View Article][PubMed]
    [Google Scholar]
  11. La Scola B., Birtles R. J., Mallet M. N., Raoult D. 1998; Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36:2847–2852[PubMed]
    [Google Scholar]
  12. La Scola B., Birtles R. J., Mallet M. N., Raoult D. 2000; Massilia gen. nov. and Massilia timonae sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 73. Int J Syst Evol Microbiol 50:423–424 [View Article][PubMed]
    [Google Scholar]
  13. Lindquist D., Murrill D., Burran W. P., Winans G., Janda J. M., Probert W. 2003; Characteristics of Massilia timonae and Massilia timonae-like isolates from human patients, with an emended description of the species. J Clin Microbiol 41:192–196 [View Article][PubMed]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  15. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [View Article]
    [Google Scholar]
  16. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48[PubMed]
    [Google Scholar]
  17. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  18. Weon H.-Y., Kim B.-Y., Son J.-A., Jang H. B., Hong S. K., Go S.-J., Kwon S.-W. 2008; Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:1422–1425 [View Article][PubMed]
    [Google Scholar]
  19. Weon H.-Y., Kim B.-Y., Hong S.-B., Jeon Y.-A., Koo B.-S., Kwon S.-W., Stackebrandt E. 2009; Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 59:1656–1660 [View Article][PubMed]
    [Google Scholar]
  20. Weon H.-Y., Yoo S.-H., Kim S.-J., Kim Y.-S., Anandham R., Kwon S.-W. 2010; Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:1938–1943 [View Article][PubMed]
    [Google Scholar]
  21. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G.-Z., Chen H.-H., Xu L. H., Jiang C. L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  22. Zhang Y. Q., Li W.-J., Zhang K.-Y., Tian X.-P., Jiang Y., Xu L.-H., Jiang C.-L., Lai R. 2006; Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 56:459–463 [View Article][PubMed]
    [Google Scholar]
  23. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
  24. Zul D., Wanner G., Overmann J. 2008; Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. Int J Syst Evol Microbiol 58:1245–1251 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032441-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032441-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed