1887

Abstract

A Gram-positive, strictly aerobic, non-spore-forming, irregular short rod, strain CAU 9625, was isolated from a sediment of the Yellow Sea in the Republic of Korea. Strain CAU 9625 grew optimally at 37 °C, at pH 8.0 and in the presence of 1 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 9625 belonged to the genus , which has one known member, . Strain CAU 9625 and ON4 shared 97.8 % 16S rRNA gene sequence similarity and formed a distinct cluster (99 % bootstrap support) within the family . DNA–DNA relatedness between strain CAU 9625 and DSM 13485 was 35.4±0.9 %. The predominant menaquinone was MK-9. The major whole-cell sugars were ribose and glucose. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid and an unidentified lipid. The fatty acid composition was similar to that of DSM 13485, with anteiso-C as the predominant fatty acid. The DNA G+C content of strain CAU 9625 was 66.2 mol%. The phylogenetic and genetic distinctiveness and several differentiating phenotypic and chemotaxonomic properties revealed that strain CAU 9625 was distinguishable from and other phylogenetic neighbours. On the basis of these data, strain CAU 9625 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAU 9625 ( = KCTC 13959  = CCUG 60841).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032268-0
2012-05-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1055.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032268-0&mimeType=html&fmt=ahah

References

  1. Cerny G.. ( 1978;). Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 113–122. [CrossRef]
    [Google Scholar]
  2. Cho S.-L., Jung M. Y., Park M.-H., Chang Y.-H., Yoon J.-H., Myung S. C., Kim W.. ( 2010;). Pseudoclavibacter chungangensis sp. nov., isolated from activated sludge. . Int J Syst Evol Microbiol 60:, 1672–1677. [CrossRef][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. Euzéby J. P.. ( 1997;). List of bacterial names with standing in nomenclature: a folder available on the Internet. . Int J Syst Bacteriol 47:, 590–592. [CrossRef][PubMed]
    [Google Scholar]
  7. Evtushenko L. I., Dorofeeva L. V., Dobrovolskaya T. G., Streshinskaya G. M., Subbotin S. A., Tiedje J. M.. ( 2001;). Agreia bicolorata gen. nov., sp. nov., to accommodate actinobacteria isolated from narrow reed grass infected by the nematode Heteroanguina graminophila. . Int J Syst Evol Microbiol 51:, 2073–2079. [CrossRef][PubMed]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  12. Fitch W. M., Margoliash E.. ( 1967;). Construction of phylogenetic trees. . Science 155:, 279–284. [CrossRef][PubMed]
    [Google Scholar]
  13. Gordon R. E., Mihm J. M.. ( 1962;). Identification of Nocardiacaviae (Erikson) nov. comb.. Ann N Y Acad Sci 98:, 628–636. [CrossRef]
    [Google Scholar]
  14. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  15. Gram H. C.. ( 1884;). Über die isolierte Färbung der Schizomyceten in Schnitt-und Trockenpräparaten. . Fortschr Med 2:, 185–189.
    [Google Scholar]
  16. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. .. New York:: Academic Press;.
    [Google Scholar]
  17. Kim M. K., Jung H.-Y.. ( 2009;). Pseudoclavibacter soli sp. nov., a β-glucosidase-producing bacterium. . Int J Syst Evol Microbiol 59:, 835–838. [CrossRef]
    [Google Scholar]
  18. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  19. Lin Y.-C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A.. ( 2004;). Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. . Int J Syst Evol Microbiol 54:, 1669–1676. [CrossRef][PubMed]
    [Google Scholar]
  20. MacKenzie S. L.. ( 1987;). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. . J Assoc Off Anal Chem 70:, 151–160.[PubMed]
    [Google Scholar]
  21. Manaia C. M., Nogales B., Weiss N., Nunes O. C.. ( 2004;). Gulosibacter molinativorax gen. nov., sp. nov., a molinate-degrading bacterium, and classification of ‘Brevibacterium helvolum’ DSM 20419 as Pseudoclavibacter helvolus gen. nov., sp. nov.. Int J Syst Evol Microbiol 54:, 783–789. [CrossRef][PubMed]
    [Google Scholar]
  22. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  23. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. ( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. . J Chromatogr A 188:, 221–233. [CrossRef]
    [Google Scholar]
  24. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Paelett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  25. Nicholson W. L., Setlow P.. ( 1990;). Sporulation, germination, and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C. R., Cutting S. M... Sussex, UK:: Wiley;.
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  28. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  29. Schumann P., Kämpfer P., Busse H.-J., Evtushenko L. I..Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes. ( 2009;). Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. . Int J Syst Evol Microbiol 59:, 1823–1849. [CrossRef][PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Stackebrandt E., Schumann P.. ( 2006;). Introduction to the taxonomy of actinobacteria. . In The Prokaryotes. A Handbook on the Biology of Bacteria, , 3rd edn., vol. 3, pp. 297–321. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer-Verlag;.
    [Google Scholar]
  32. Stackebrandt E., Rainey F., Ward-Rainey N.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  33. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  35. Vaz-Moreira I., Nobre M. F., Ferreira A. C., Schumann P., Nunes O. C., Manaia C. M.. ( 2008;). Humibacter albus gen. nov., sp. nov., isolated from sewage sludge compost. . Int J Syst Evol Microbiol 58:, 1014–1018. [CrossRef][PubMed]
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  37. Zhi X.-Y., Li W.-J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. . Int J Syst Evol Microbiol 59:, 589–608. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032268-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032268-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error