1887

Abstract

Two Gram-staining-negative, red- and orange-pigmented, non-motile, rod-shaped, extremely halophilic bacteria, designated strains CB7 and DGO, were isolated from Aran-Bidgol salt lake, Iran. Growth occurred at NaCl concentrations of between 2 and 5 M NaCl and the isolates grew optimally with 3 M NaCl. The optimum pH and temperature for growth of the two strains were pH 7.5 and 37 °C, and they were able to grow over pH and temperature ranges of pH 6–8 and 25–50 °C. The predominant fatty acids of the two isolates were Cω7, iso-C and summed feature 3 (Cω7 and/or iso-C 2-OH). The polar lipid pattern of the two isolates consisted of diphosphatidylglycerol, phosphatidylcholine, three unidentified lipids, one unidentified aminolipid and three unidentified glycolipids. The only quinone present was menaquinone 7 (MK-7). The G+C contents of the genomic DNA of strains CB7 and DGO were 64.8 and 65.6 mol%, respectively. 16S rRNA gene sequence analysis indicated that strains CB7 and DGO were related to in the phylum . Levels of 16S rRNA gene sequence similarity between strains CB7 and DGO and DSM 13855 were 93.2 and 93.6 %, respectively. The two novel strains shared 98.9 % 16S rRNA gene sequence similarity. DNA–DNA hybridization experiments between strains CB7 and DGO and DSM 13855 indicated levels of relatedness of 44 and 52 %, respectively, while the level of relatedness between the two new isolates was 53 %. Chemotaxonomic data supported the placement of strains CB7 and DGO in the genus . DNA–DNA hybridization studies and biochemical and physiological characterization allowed strains CB7 and DGO to be differentiated from and from each other. They are therefore considered to represent two novel species of the genus , for which the names sp. nov. (type strain CB7 = IBRC-M 10036 = CGMCC 1.11003) and sp. nov. (type strain DGO = IBRC-M 10423 = CGMCC 1.11002) are proposed. Emended descriptions of the genus and of are also presented.

Funding
This study was supported by the:
  • Iranian Biological Resource Centre (IBRC) (Award MI-1388-01)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031971-0
2012-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1521.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031971-0&mimeType=html&fmt=ahah

References

  1. Antón J., Llobet-Brossa E., Rodríguez-Valera F., Amann R. 1999; Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523 [View Article][PubMed]
    [Google Scholar]
  2. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Mora R. 2002; Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491[PubMed]
    [Google Scholar]
  3. Antón J., Peña A., Santos F., Martínez-García M., Schmitt-Kopplin P., Rosselló-Mora R. 2008; Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber . Saline Syst 4:15 [View Article][PubMed]
    [Google Scholar]
  4. Asker D., Beppu T., Ueda K. 2007; Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77:383–392 [View Article][PubMed]
    [Google Scholar]
  5. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791[PubMed]
    [Google Scholar]
  6. Benlloch S., Martínez-Murcía A. J., Rodríguez-Valera F. 1995; Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581 [View Article]
    [Google Scholar]
  7. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328[PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  9. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  10. Dyall-Smith M. 2008 The Halohandbook: protocols for haloarchaeal genetics. http://www.haloarchaea.com/resources/halohandbook
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  13. González C., Gutiérrez C., Ramírez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  14. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [View Article][PubMed]
    [Google Scholar]
  15. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517[PubMed]
    [Google Scholar]
  16. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  17. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  18. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [View Article][PubMed]
    [Google Scholar]
  19. Martínez-Murcia A. J., Acinas S. G., Rodríguez-Valera F. 1995; Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol Ecol 17:247–255 [View Article]
    [Google Scholar]
  20. Maturrano L., Santos F., Rosselló-Mora R., Antón J. 2006; Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895 [View Article][PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  22. Mesbah N. M., Abou-El-Ela S. H., Wiegel J. 2007; Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617 [View Article][PubMed]
    [Google Scholar]
  23. Mongodin E. F., Nelson K. E., Daugherty S., Deboy R. T., Wister J., Khouri H., Weidman J., Walsh D. A., Papke R. T. other authors 2005; The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci U S A 102:18147–18152 [View Article][PubMed]
    [Google Scholar]
  24. Mutlu M. B., Martínez-García M., Santos F., Peña A., Guven K., Antón J. 2008; Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65:474–483 [View Article][PubMed]
    [Google Scholar]
  25. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  26. Peña A., Valens M., Santos F., Buczolits S., Antón J., Kämpfer P., Busse H. J., Amann R., Rosselló-Mora R. 2005; Intraspecific comparative analysis of the species Salinibacter ruber . Extremophiles 9:151–161 [View Article][PubMed]
    [Google Scholar]
  27. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis mega software version 4.0. Mol Biol Evol 24:1596–1599[PubMed] [CrossRef]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  32. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  33. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031971-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031971-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error