1887

Abstract

Four aerobic bacteria, designated MP5ACTX2, MP5ACTX8, MP5ACTX9 and S6CTX5A, were isolated from tundra soil of north-western Finland (69° 03′ N 20° 50′ E). Cells of all isolates were Gram-negative, non-motile rods. Phylogenetic analysis indicated that they belonged to the genus of subdivision 1 of the phylum . 16S rRNA gene sequence similarity between the new isolates and the type strains of , , and ranged from 94 to 99 %. Analysis of the RNA polymerase beta subunit () gene sequence indicated that the isolates represented novel species of the genus (<92 % sequence similarity between the isolates and members of the genus ). This was also confirmed by low DNA–DNA relatedness (31 %) between strain S6CTX5A and the type strain of , which exhibited 99.1 % 16S rRNA gene sequence similarity and 91.7 % gene sequence similarity. The isolates grew at pH 3.5–6.5 and at 4–26 °C. Sugars were the preferred growth substrates. The major cellular fatty acids were iso-C, Cω7 and C and the major isoprenoid quinone was MK-8. The DNA G+C content was 56–60 mol%. On the basis of phylogenetic analysis and chemotaxonomic and physiological data, the isolates represent four novel species of the genus , for which the names MP5ACTX2 ( = ATCC BAA-1858 = DSM 23128), MP5ACTX8 ( = ATCC BAA-1857 = DSM 23137), MP5ACTX9 (ATCC BAA-1859 = DSM 23138) and S6CTX5A ( = LMG 26174 = DSM 23136) are proposed. An emended description of the genus is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031864-0
2012-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2097.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031864-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Shinnick T. M., Raoult D., Drancourt M.. ( 2008;). Complete rpoB gene sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. . Int J Syst Evol Microbiol 58:, 1807–1814. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  3. Barns S. M., Cain E. C., Sommerville L., Kuske C. R.. ( 2007;). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. . Appl Environ Microbiol 73:, 3113–3116. [CrossRef][PubMed]
    [Google Scholar]
  4. Bazzola J. J., Russel L. D.. ( 1991;). Electron Microscopy. Principles and Techniques for Biologists. Boston, London, Singapore:: Jones and Bartlett Publishers;.
    [Google Scholar]
  5. Campbell B. J., Polson S. W., Hanson T. E., Mack M. C., Schuur E. A.. ( 2010;). The effect of nutrient deposition on bacterial communities in Arctic tundra soil. . Environ Microbiol 12:, 1842–1854. [CrossRef][PubMed]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  7. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R.. ( 1999;). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. . Int J Syst Bacteriol 49:, 1615–1622. [CrossRef][PubMed]
    [Google Scholar]
  8. Davis K. E. R., Joseph S. J., Janssen P. H.. ( 2005;). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. . Appl Environ Microbiol 71:, 826–834. [CrossRef][PubMed]
    [Google Scholar]
  9. Dedysh S. N., Kulichevskaya I. S., Serkebaeva Y. M., Mityaeva M. A., Sorokin V. V., Suzina N. E., Rijpstra W. I., Damsté J. S.. ( 2012;). Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. . Int J Syst Evol Microbiol 62:, 654–664. [CrossRef][PubMed]
    [Google Scholar]
  10. Eichorst S. A., Breznak J. A., Schmidt T. M.. ( 2007;). Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. . Appl Environ Microbiol 73:, 2708–2717. [CrossRef][PubMed]
    [Google Scholar]
  11. Eichorst S. A., Kuske C. R., Schmidt T. M.. ( 2011;). Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. . Appl Environ Microbiol 77:, 586–596. [CrossRef][PubMed]
    [Google Scholar]
  12. Fukunaga Y., Kurahashi M., Yanagi K., Yokota A., Harayama S.. ( 2008;). Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. . Int J Syst Evol Microbiol 58:, 2597–2601. [CrossRef][PubMed]
    [Google Scholar]
  13. Galtier N., Gouy M., Gautier C.. ( 1996;). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. . Comput Appl Biosci 12:, 543–548.[PubMed]
    [Google Scholar]
  14. Hayt M. A.. ( 1981;). Fixation for Electron Microscopy. New York:: Academic Press;.
    [Google Scholar]
  15. Huß V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  16. Janssen P. H.. ( 2006;). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. . Appl Environ Microbiol 72:, 1719–1728. [CrossRef][PubMed]
    [Google Scholar]
  17. Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fierer N.. ( 2009;). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. . ISME J 3:, 442–453. [CrossRef][PubMed]
    [Google Scholar]
  18. Kishimoto N., Kosako Y., Tano T.. ( 1991;). Acidobacterium capsulatum gen. nov., sp. nov. an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. . Curr Microbiol 22:, 1–7. [CrossRef]
    [Google Scholar]
  19. Koch I. H., Gich F., Dunfield P. F., Overmann J.. ( 2008;). Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. . Int J Syst Evol Microbiol 58:, 1114–1122. [CrossRef][PubMed]
    [Google Scholar]
  20. Kulichevskaya I. S., Suzina N. E., Liesack W., Dedysh S. N.. ( 2010;). Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. . Int J Syst Evol Microbiol 60:, 301–306. [CrossRef][PubMed]
    [Google Scholar]
  21. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrant E., Goodfellow M... London:: John Wiley & Sons;.
    [Google Scholar]
  22. Liesack W., Bak F., Kreft J. U., Stackebrandt E.. ( 1994;). Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. . Arch Microbiol 162:, 85–90. [CrossRef][PubMed]
    [Google Scholar]
  23. Männistö M. K., Häggblom M. M.. ( 2006;). Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. . Syst Appl Microbiol 29:, 229–243. [CrossRef][PubMed]
    [Google Scholar]
  24. Männistö M. K., Tiirola M., Häggblom M. M.. ( 2007;). Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. . FEMS Microbiol Ecol 59:, 452–465. [CrossRef][PubMed]
    [Google Scholar]
  25. Männistö M. K., Tiirola M., Häggblom M. M.. ( 2009;). Effect of freeze-thaw cycles on bacterial communities of arctic tundra soil. . Microb Ecol 58:, 621–631. [CrossRef][PubMed]
    [Google Scholar]
  26. Männistö M. K., Tiirola M., McConnell J., Häggblom M. M.. ( 2010;). Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. . Int J Syst Evol Microbiol 60:, 2849–2856. [CrossRef][PubMed]
    [Google Scholar]
  27. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M.. ( 2011;). Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. . Int J Syst Evol Microbiol 61:, 1823–1828. [CrossRef][PubMed]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  29. Miller, L. & Berger, T. (1985). Bacterial identification by gas chromatography of whole cell fatty acids, Hewlett-Packard application note 228-41. Palo Alto, CA: Hewlett-Packard Co.
  30. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 683–700. Edited by Gerhardt P. , Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Okamura K., Kawai A., Yamada T., Hiraishi A.. ( 2011;). Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria. . FEMS Microbiol Lett 317:, 138–142. [CrossRef][PubMed]
    [Google Scholar]
  32. Pankratov T. A., Dedysh S. N.. ( 2010;). Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. . Int J Syst Evol Microbiol 60:, 2951–2959. [CrossRef][PubMed]
    [Google Scholar]
  33. Pankratov T. A., Serkebaeva Y. M., Kulichevskaya I. S., Liesack W., Dedysh S. N.. ( 2008;). Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. . ISME J 2:, 551–560. [CrossRef][PubMed]
    [Google Scholar]
  34. Pankratov T. A., Kirsanova L. A., Kaparullina E. N., Kevbrin V. V., Dedysh S. N.. ( 2012;). Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. . Int J Syst Evol Microbiol 62:, 430–437. [CrossRef][PubMed]
    [Google Scholar]
  35. Sait M., Hugenholtz P., Janssen P. H.. ( 2002;). Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. . Environ Microbiol 4:, 654–666. [CrossRef][PubMed]
    [Google Scholar]
  36. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  37. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  38. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  39. Ward N. L., Challacombe J. F., Janssen P. H., Henrissat B., Coutinho P. M., Wu M., Xie G., Haft D. H., Sait M.. & other authors ( 2009;). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. . Appl Environ Microbiol 75:, 2046–2056. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031864-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031864-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error