1887

Abstract

Strain GAM6-1 is a novel, strictly anaerobic, non-spore-forming, Gram-stain-positive bacterium that was isolated from the faeces of a healthy individual. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GAM6-1 was most closely related to ATCC 27340 (95.7 % sequence similarity), in the family . Strain GAM6-1 did not exhibit catalase or oxidase activity. The strain’s cellular fatty acids were of the straight-chain saturated and mono-unsaturated types, with C (24.10 %), C (19.09 %) and C dimethylacetal (14.35 %) predominant. Strain GAM6-1 was able to produce acid from various carbohydrates. Glucose fermentation produced acetic acid as the major short-chain fatty acid. The genomic DNA G+C content of strain GAM6-1 was 35.6 mol%. Based on phenotypic, genotypic and phylogenetic evidence, strain GAM6-1 ( = KCTC 5981  = JCM 17204) is considered to represent a novel species, for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • , Korea Food and Drug Administration , (Award 09172KFDA996)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031625-0
2012-04-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/776.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031625-0&mimeType=html&fmt=ahah

References

  1. Andersson A. F., Lindberg M., Jakobsson H., Bäckhed F., Nyrén P., Engstrand L. 2008; Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836 [CrossRef][PubMed]
    [Google Scholar]
  2. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  3. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  4. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef][PubMed]
    [Google Scholar]
  5. Furuya H., Ide Y., Hamamoto M., Asanuma N., Hino T. 2010; Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide. Arch Microbiol 192:365–372 [CrossRef][PubMed]
    [Google Scholar]
  6. Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B. S., Gordon J. I., Relman D. A., Fraser-Liggett C. M., Nelson K. E. 2006; Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359 [CrossRef][PubMed]
    [Google Scholar]
  7. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  8. Gosalbes M. J., Durbán A., Pignatelli M., Abellan J. J., Jiménez-Hernández N., Pérez-Cobas A. E., Latorre A., Moya A. 2011; Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS ONE 6:e17447 [CrossRef][PubMed]
    [Google Scholar]
  9. Guerrant G. O., Lambert M. A., Moss C. W. 1982; Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography. J Clin Microbiol 16:355–360[PubMed]
    [Google Scholar]
  10. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  11. Kurokawa K., Itoh T., Kuwahara T., Oshima K., Toh H., Toyoda A., Takami H., Morita H., Sharma V. K. other authors 2007; Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181 [CrossRef][PubMed]
    [Google Scholar]
  12. Lay C., Sutren M., Rochet V., Saunier K., Doré J., Rigottier-Gois L. 2005; Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 7:933–946 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu C., Finegold S. M., Song Y., Lawson P. A. 2008; Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58:1896–1902 [CrossRef][PubMed]
    [Google Scholar]
  14. MIDI 1999 Sherlock Microbial Identification System Operating Manual version 3.0. Newark, DE: MIDI, Inc;
    [Google Scholar]
  15. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F. other authors 2010; A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [CrossRef][PubMed]
    [Google Scholar]
  16. Rajilić-Stojanović M., Smidt H., de Vos W. M. 2007; Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  18. Suau A., Bonnet R., Sutren M., Godon J. J., Gibson G. R., Collins M. D., Doré J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807[PubMed]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  20. Tap J., Mondot S., Levenez F., Pelletier E., Caron C., Furet J. P., Ugarte E., Muñoz-Tamayo R., Paslier D. L. other authors 2009; Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  22. Wang M., Ahrné S., Jeppsson B., Molin G. 2005; Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231 [CrossRef][PubMed]
    [Google Scholar]
  23. Zoetendal E. G., von Wright A., Vilpponen-Salmela T., Ben-Amor K., Akkermans A. D., de Vos W. M. 2002; Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031625-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031625-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error