1887

Abstract

A novel anaerobic, Fe(III)-reducing, hydrogenogenic, carboxydotrophic bacterium, designated strain Ug1, was isolated from a volcanic acidic hot spring in southern Kyushu Island, Japan. Cells of the isolate were rod-shaped (1.0–3.0 µm long) and motile due to peritrichous flagella. Strain Ug1 grew chemolithoautotrophically on CO (100 % in the gas phase) with reduction of ferric citrate, amorphous iron (III) oxide, 9,10-anthraquinone 2,6-disulfonate, thiosulfate or elemental sulfur. No carboxydotrophic growth occurred with sulfate, sulfite, nitrate or fumarate as electron acceptor. During growth on CO, H and CO were produced. Growth occurred on molecular hydrogen as an energy source and carbon dioxide as a sole carbon source. Growth was observed on various organic compounds under an N atmosphere with the reduction of ferric iron. The temperature range for carboxydotrophic growth was 50–70 °C, with an optimum at 65 °C. The pH range for growth was 4.6–8.6, with an optimum between 6.0 and 6.5. The doubling time under optimum conditions using CO with ferric citrate was 1.5 h. The DNA G+C content was 42.2 mol%. Analysis of 16S rRNA gene sequences demonstrated that this strain belongs to the thermophilic carboxydotrophic bacterial genus , with sequence similarities of 94.1–96.6 % to members of this genus. The isolate can be distinguished from other members of the genus by its ability to grow with elemental sulfur or thiosulfate coupled to CO oxidation. On the basis of phylogenetic analysis and unique physiological features, the isolate represents a novel species of the genus for which the name sp. nov. is proposed; the type strain of the novel species is Ug1 ( = DSM 23698 = NBRC 107576).

Funding
This study was supported by the:
  • , The Ministry of Education, Culture, Sports, Science and Technology , (Award 20248023)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031583-0
2012-07-01
2020-11-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1692.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031583-0&mimeType=html&fmt=ahah

References

  1. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. other authors 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:Database issueD141–D145 [CrossRef][PubMed]
    [Google Scholar]
  2. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V. other authors 2008; Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:Web Server issueW465–W469 [CrossRef][PubMed]
    [Google Scholar]
  3. Fischer F., Zillig W., Stetter K. O., Schreiber G. 1983; Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513 [CrossRef][PubMed]
    [Google Scholar]
  4. Henstra A. M., Stams A. J. M. 2004; Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens . Appl Environ Microbiol 70:7236–7240 [CrossRef][PubMed]
    [Google Scholar]
  5. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  6. Lee H. S., Kang S. G., Bae S. S., Lim J. K., Cho Y., Kim Y. J., Jeon J. H., Cha S.-S., Kwon K. K. other authors 2008; The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499 [CrossRef][PubMed]
    [Google Scholar]
  7. Lilley M. D., de Angelis M. A., Gordon L. I. 1982; CH4, H2, CO and N2O in submarine hydrothermal vent waters. Nature 300:48–50 [CrossRef]
    [Google Scholar]
  8. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  9. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  10. Novikov A. A., Sokolova T. G., Lebedinsky A. V., Kolganova T. V., Bonch-Osmolovskaya E. A. 2011; Carboxydothermus islandicus sp. nov., a new thermophilic, hydrogenogenic, carboxydotrophic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 61:2532–2537 [CrossRef][PubMed]
    [Google Scholar]
  11. Oelgeschläger E., Rother M. 2008; Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 190:257–269 [CrossRef][PubMed]
    [Google Scholar]
  12. Pfennig N. 1974; Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae . Arch Microbiol 100:197–206 [CrossRef]
    [Google Scholar]
  13. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  14. Schwertmann U. 1991; Solubility and dissolution of iron oxides. Plant Soil 130:1–25 [CrossRef]
    [Google Scholar]
  15. Shock E. L., Holland M., Meyer-Dombard D., Amend J. P., Osburn G. R., Fischer T. P. 2010; Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim Cosmochim Acta 74:4005–4043 [CrossRef]
    [Google Scholar]
  16. Slepova T. V., Sokolova T. G., Kolganova T. V., Tourova T. P., Bonch-Osmolovskaya E. A. 2009; Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 59:213–217 [CrossRef][PubMed]
    [Google Scholar]
  17. Slobodkin A., Reysenbach A.-L., Strutz N., Dreier M., Wiegel J. 1997; Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547 [CrossRef][PubMed]
    [Google Scholar]
  18. Slobodkin A. I., Sokolova T. G., Lysenko A. M., Wiegel J. 2006; Reclassification of Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov., and emended description of the genus Carboxydothermus . Int J Syst Evol Microbiol 56:2349–2351 [CrossRef][PubMed]
    [Google Scholar]
  19. Sokolova T. G., Jeanthon C., Kostrikina N. A., Chernyh N. A., Lebedinsky A. V., Stackebrandt E., Bonch-Osmolovskaya E. A. 2004a; The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323 [CrossRef][PubMed]
    [Google Scholar]
  20. Sokolova T. G., González J. M., Kostrikina N. A., Chernyh N. A., Slepova T. V., Bonch-Osmolovskaya E. A., Robb F. T. 2004b; Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359 [CrossRef][PubMed]
    [Google Scholar]
  21. Sokolova T. G., Henstra A.-M., Sipma J., Parshina S. N., Stams A. J. M., Lebedinsky A. V. 2009; Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 68:131–141 [CrossRef][PubMed]
    [Google Scholar]
  22. Sørensen J. 1982; Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43:319–324[PubMed]
    [Google Scholar]
  23. Stetter K. O. 2005; Volcanoes, hydrothermal venting, and the origin of life. In Volcanoes and the Environment pp. 175–206 Edited by Marti J., Ernst G. G. J. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  24. Svetlichny V. A., Sokolova T. G., Gerhardt M., Ringpfeil M., Kostrikina N. A., Zavarzin G. A. 1991; Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-oxidizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260 [CrossRef]
    [Google Scholar]
  25. Svetlitchnyi V., Peschel C., Acker G., Meyer O. 2001; Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans . J Bacteriol 183:5134–5144 [CrossRef][PubMed]
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  28. Techtmann S. M., Colman A. S., Robb F. T. 2009; ‘That which does not kill us only makes us stronger’: the role of carbon monoxide in thermophilic microbial consortia. Environ Microbiol 11:1027–1037 [CrossRef][PubMed]
    [Google Scholar]
  29. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  30. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  31. Wu M., Ren Q., Durkin A. S., Daugherty S. C., Brinkac L. M., Dodson R. J., Madupu R., Sullivan S. A., Kolonay J. F. other authors 2005; Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1:e65 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031583-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031583-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error