1887

Abstract

Two coccoid, non-motile bacteria were isolated from seawater in the north-western Pacific Ocean near Japan. The two strains, designated S1-36 and S1-72, were Gram-negative, obligately aerobic, heterotrophic and catalase-negative. They were able to reduce nitrate to nitrogen. Both strains required NaCl for growth, with optimum growth in 2 % NaCl, and grew at 15–30 °C, with optimum growth at 20–25 °C. Genomic DNA G+C contents of strains S1-36 and S1-72 were 59.6 and 59.4 mol%, respectively. The predominant isoprenoid quinone was Q-8 and major cellular fatty acids were Cω7, Cω7 and Cω8. Analyses of 16S rRNA gene sequences revealed that strains S1-36 and S1-72 were related to each other (96.1 % sequence similarity) and both strains showed 92.3–94.7 % sequence similarity with members of the genus . On the basis of phenotypic and phylogenetic features, strains S1-36 and S1-72 should be classified as representatives of two novel species in a new genus, gen. nov., within the class . The names proposed are sp. nov., the type species of the genus, with S1-36 ( = NBRC 107739 = KCTC 23429) as type strain, and sp. nov., with S1-72 ( = NBRC 107742 = KCTC 23430) as type strain

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031443-0
2012-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1784.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031443-0&mimeType=html&fmt=ahah

References

  1. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127[PubMed]
    [Google Scholar]
  2. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  3. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  4. Graeber I., Kaesler I., Borchert M. S., Dieckmann R., Pape T., Lurz R., Nielsen P., von Döhren H., Michaelis W., Szewzyk U. 2008; Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. Int J Syst Evol Microbiol 58:585–590 [View Article][PubMed]
    [Google Scholar]
  5. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  6. Hwang C. Y., Cho B. C. 2009; Spongiibacter tropicus sp. nov., isolated from a Synechococcus culture. Int J Syst Evol Microbiol 59:2176–2179 [View Article][PubMed]
    [Google Scholar]
  7. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  8. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  9. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–147 Edited by Stackebrandt E., Goodfellow M. New York: John Wiley and Sons;
    [Google Scholar]
  10. Lee Y. K., Hong S. G., Cho H. H., Cho K. H., Lee H. K. 2007; Dasania marina gen. nov., sp. nov., of the order Pseudomonadales, isolated from Arctic marine sediment. J Microbiol 45:505–509[PubMed]
    [Google Scholar]
  11. Li H., Zhang S., Chen C., Zhang Y., Gao Z., Yu Y., Chen X., Chen B., Zhang Y. 2011; Zhongshania antarctica gen. nov., sp. nov. and Zhongshania guokunii sp. nov., new members of the Gammaproteobacteria isolated from coastal attached (fast) ice and surface seawater of the Antarctic, respectively. Int J Syst Evol Microbiol 61:2052–2057 [View Article][PubMed]
    [Google Scholar]
  12. Lucena T., Pascual J., Garay E., Arahal D. R., Macián M. C., Pujalte M. J. 2010; Haliea mediterranea sp. nov., a marine gammaproteobacterium. Int J Syst Evol Microbiol 60:1844–1848 [View Article][PubMed]
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  15. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  16. Murray R. G. E., Doetsch R. N., Robinow F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Park S., Yoshizawa S., Kogure K., Yokota A. 2011; Oceanicoccus sagamiensis gen. nov., sp. nov., a gammaproteobacterium isolated from sea water of Sagami Bay in Japan. J Microbiol 49:233–237 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  19. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  20. Spring S., Lünsdorf H., Fuchs B. M., Tindall B. J. 2009; The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov.. PLoS ONE 4:e4866 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  23. Urios L., Agogué H., Intertaglia L., Lesongeur F., Lebaron P. 2008a; Melitea salexigens gen. nov., sp. nov., a gammaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol 58:2479–2483 [View Article][PubMed]
    [Google Scholar]
  24. Urios L., Intertaglia L., Lesongeur F., Lebaron P. 2008b; Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 58:1233–1237 [View Article][PubMed]
    [Google Scholar]
  25. Urios L., Intertaglia L., Lesongeur F., Lebaron P. 2009; Haliea rubra sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 59:1188–1192 [View Article][PubMed]
    [Google Scholar]
  26. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  27. Worliczek H. L., Kämpfer P., Rosengarten R., Tindall B. J., Busse H. J. 2007; Polar lipid and fatty acid profiles – re-vitalizing old approaches as a modern tool for the classification of mycoplasmas?. Syst Appl Microbiol 30:355–370 [View Article][PubMed]
    [Google Scholar]
  28. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [View Article][PubMed]
    [Google Scholar]
  29. Yan S., Fuchs B. M., Lenk S., Harder J., Wulf J., Jiao N.-Z., Amann R. 2009; Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria . Syst Appl Microbiol 32:124–139 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031443-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031443-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error