1887

Abstract

A novel red-pigmented halophilic archaeon, strain EB27, was isolated from Aran-Bidgol salt lake, a hypersaline playa in Iran. Cells of strain EB27 were non-motile and pleomorphic (rods to triangular or disc-shaped). Strain EB27 required at least 2.5 M NaCl and 0.1 M MgCl for growth. Optimal growth was achieved at 4 M NaCl and 0.5 M MgCl. The optimum pH and temperature for growth were pH 7.5 and 40 °C; it was able to grow at pH 6.0–8.0 and 25–50 °C. 16S rRNA gene sequence analysis showed that strain EB27 is a member of the family ; however, levels of 16S rRNA gene sequence similarity were as low as 90.0, 89.3 and 89.1 % to the most closely related haloarchaeal taxa, namely DS12, 2-9-1 and AX-2, respectively. The DNA GC content of strain EB27 was 61 mol%. Strain EB27 contained phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, common phospholipids found in haloarchaea, together with two minor phospholipids. The only quinone present was MK-8(II-H). Physiological, biochemical and phylogenetic differences between strain EB27 and recognized genera of extremely halophilic archaea suggest that this strain represents a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of , the type species of the new genus, is strain EB27 ( = IBRC-M 10015 = CGMCC 1.11001).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031419-0
2012-06-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1331.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031419-0&mimeType=html&fmt=ahah

References

  1. Balch W. E. , Wolfe R. S. . ( 1976; ). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  2. Bryant M. P. . ( 1972; ). Commentary on the Hungate technique for culture of anaerobic bacteria. . Am J Clin Nutr 25:, 1324–1328.[PubMed]
    [Google Scholar]
  3. Clayton W. , Gibbs W. E. . ( 1927; ). Examination for halophilic microorganisms. . Analyst 52:, 395–397. [CrossRef]
    [Google Scholar]
  4. DeLong E. F. . ( 1992; ). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dussault H. P. . ( 1955; ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  6. Dyall-Smith M. L. . ( 2006; ). The Halohandbook: protocols for haloarchaeal genetics. . http://www.haloarchaea.com/resources/halohandbook.
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. González C. , Gutiérrez C. , Ramirez C. . ( 1978; ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef] [PubMed]
    [Google Scholar]
  10. Grant W. D. , Kamekura M. , McGenity T. J. , Ventosa A. . ( 2001; ). Order I. Halobacteriales: the archaea and deeply branching and phototrophic bacteria. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1. Edited by Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  11. Gutiérrez C. , González C. . ( 1972; ). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  12. Harrison F. C. , Kennedy M. E. . ( 1922; ). The red discoloration of cured codfish. . Trans R Soc Can Sct III 16:, 101–152.
    [Google Scholar]
  13. Hezayen F. F. , Rehm B. H. A. , Tindall B. J. , Steinbüchel A. . ( 2001; ). Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). . Int J Syst Evol Microbiol 51:, 1133–1142. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kamekura M. , Dyall-Smith M. L. . ( 1995; ). Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba . . J Gen Appl Microbiol 41:, 333–350. [CrossRef]
    [Google Scholar]
  15. Lane D. J. , Pace B. , Olsen G. J. , Stahl D. A. , Sogin M. L. , Pace N. R. . ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lochhead A. G. . ( 1934; ). Bacteriological studies on the red discoloration of salted hides. . Can J Res 10:, 275–286. [CrossRef]
    [Google Scholar]
  17. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Oren A. . ( 2008; ). Microbial life at high salt concentrations: phylogenetic and metabolic diversity. . Saline Syst 4:, 2.[PubMed] [CrossRef]
    [Google Scholar]
  19. Oren A. , Ventosa A. , Grant W. D. . ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales . . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  20. Rzhetsky A. , Nei M. . ( 1992; ). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  21. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetic analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  24. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. J. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef]
    [Google Scholar]
  25. Torreblanca M. , Rodríguez-Valera F. , Juez G. , Ventosa A. , Kamekura M. , Kates M. . ( 1986; ). Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov.. Syst Appl Microbiol 8:, 89–99. [CrossRef]
    [Google Scholar]
  26. Ventosa A. , Gutiérrez M. C. , Kamekura M. , Dyall-Smith M. L. . ( 1999; ). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 131–136. [CrossRef] [PubMed]
    [Google Scholar]
  27. Vreeland R. H. , Straight S. , Krammes J. , Dougherty K. , Rosenzweig W. D. , Kamekura M. . ( 2002; ). Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. . Extremophiles 6:, 445–452. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wainø M. , Tindall B. J. , Ingvorsen K. . ( 2000; ). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. . Int J Syst Evol Microbiol 50:, 183–190. [CrossRef] [PubMed]
    [Google Scholar]
  29. Xue Y. , Fan H. , Ventosa A. , Grant W. D. , Jones B. E. , Cowan D. A. , Ma Y. . ( 2005; ). Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. . Int J Syst Evol Microbiol 55:, 2501–2505. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031419-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031419-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error