1887

Abstract

A Gram-positive, moderately halophilic rod, designated X5B, was isolated from saline mud of the hypersaline lake Aran-Bidgol in Iran. Strain X5B was a strictly aerobic, motile bacterium that produced ellipsoidal endospores at a central-subterminal position in non-swollen sporangia. The isolate grew at pH 7.0–10.0 (optimum pH 7.5), at 25–45 °C (optimum 35 °C) and with 2.5–15 % (w/v) NaCl (optimum 5–7.5 %). On the basis of 16S rRNA gene sequences, strain X5B belonged to the genus and showed highest similarity with HS136 (95.6 % 16S rRNA gene sequence similarity) and BH169 (95.5 %). The DNA G+C content was 42.4 mol%. The major cellular fatty acids were anteiso-C and iso-C and the polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three phospholipids and two glycolipids. The diamino acid found in the cell-wall peptidoglycan was -diaminopimelic acid and the isoprenoid quinones were MK-7 (92 %), MK-6 (6 %) and MK-5 (2 %). On the basis of phylogenetic, chemotaxonomic and phenotypic data, a novel species of the genus is proposed, with the name sp. nov. The type strain is X5B ( = IBRC 10446  = DSM 23995).

Funding
This study was supported by the:
  • Iranian Biological Resource Centre (IBRC) (Award MI-1388-04)
  • International Foundation for Science (IFS) (Award A/4527-1)
  • Spanish Ministerio de Educación y Ciencia (Award CGL2010-19303)
  • National Science Foundation (Award DEB-0919290)
  • Junta de Andalucía (Award P06-CVI-01829)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030874-0
2012-04-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/811.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030874-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Salehghamari E., Khajeh K., Kabiri M., Naddaf S. 2008; Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48:160–167 [View Article][PubMed]
    [Google Scholar]
  2. Amoozegar M. A., Sánchez-Porro C., Rohban R., Hajighasemi M., Ventosa A. 2009; Bacillus persepolensis sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 59:2352–2358 [View Article][PubMed]
    [Google Scholar]
  3. Arahal D. R., Ventosa A. 2002; Moderately halophilic and halotolerant species of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives pp. 83–99 Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell; [View Article]
    [Google Scholar]
  4. Baron E. J., Finegold S. M. 1990 Bailey and Scott’s Diagnostic Microbiology, 8th edn. St Louis, MO: Mosby;
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  6. de la Haba R. R., Sánchez-Porro C., Márquez M. C., Ventosa A. 2011; Taxonomy of halophiles. In Extremophiles Handbook pp. 255–308 Edited by Horikoshi K. Tokyo: Springer; [View Article]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  9. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [View Article][PubMed]
    [Google Scholar]
  10. Harrigan W. F., McCance M. E. 1976 Laboratory Methods in Food and Dairy Microbiology London: Academic Press;
    [Google Scholar]
  11. Heyrman J., Vanparys B., Logan N. A., Balcaen A., Rodríguez-Díaz M., Felske A., De Vos P. 2004; Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57 [View Article][PubMed]
    [Google Scholar]
  12. Heyrman J., Rodríguez-Díaz M., Devos J., Felske A., Logan N. A., De Vos P. 2005; Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 55:111–117 [View Article][PubMed]
    [Google Scholar]
  13. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:781–786 [View Article][PubMed]
    [Google Scholar]
  14. Karbalaei-Heidari H. R., Amoozegar M. A., Hajighasemi M., Ziaee A. A., Ventosa A. 2009; Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis . J Ind Microbiol Biotechnol 36:21–27 [View Article][PubMed]
    [Google Scholar]
  15. Kim O. S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y.S., Lee J.-H., Yi H., Won S., Chun J. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [CrossRef]
    [Google Scholar]
  16. Kiran K. K., Chandra T. S. 2008; Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl Microbiol Biotechnol 77:1023–1031 [View Article][PubMed]
    [Google Scholar]
  17. Lim J.-M., Jeon C. O., Kim C.-J. 2006a; Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 56:2903–2908 [View Article][PubMed]
    [Google Scholar]
  18. Lim J.-M., Jeon C. O., Lee J.-C., Ju Y. J., Park D.-J., Kim C.-J. 2006b; Bacillus koreensis sp. nov., a spore-forming bacterium, isolated from the rhizosphere of willow roots in Korea. Int J Syst Evol Microbiol 56:59–63 [View Article][PubMed]
    [Google Scholar]
  19. Lim J.-M., Jeon C. O., Lee S.-M., Lee J.-C., Xu L.-H., Jiang C.-L., Kim C.-J. 2006c; Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 56:373–377 [View Article][PubMed]
    [Google Scholar]
  20. Logan N. A., De Vos P. 2009; Genus I. Bacillus . In Bergey’s Manual of Systematic Bacteriology, The Firmicutes vol. 3 pp. 21–128 Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B. New York: Springer;
    [Google Scholar]
  21. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. other authors 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  22. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  23. Margesin R., Schinner F. 2001; Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83 [View Article][PubMed]
    [Google Scholar]
  24. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  25. Márquez M. C., Sánchez-Porro C., Ventosa A. 2011; Halophilic and haloalkaliphilic, aerobic endospore-forming bacteria in soil. In Endospore-forming Soil Bacteria pp. 309–339 Edited by Logan N. A., De Vos P. Berlin: Springer; [View Article]
    [Google Scholar]
  26. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [View Article][PubMed]
    [Google Scholar]
  27. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina and Deleya salina, and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  28. Mellado M. E., Ventosa A. 2003; Biotechnological potential of moderately and extremely halophilic microorganisms. In Microorganisms for Health Care, Food and Enzyme Production pp. 233–256 Edited by Barredo J. L. Kerala: Research Signpost;
    [Google Scholar]
  29. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  30. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S. 2003; Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol 53:569–576 [View Article][PubMed]
    [Google Scholar]
  31. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus . J Gen Microbiol 134:1847–1882[PubMed]
    [Google Scholar]
  33. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34:287–292 [View Article]
    [Google Scholar]
  34. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [View Article]
    [Google Scholar]
  35. Rohban R., Amoozegar M. A., Ventosa A. 2009; Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340 [View Article][PubMed]
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  37. Sánchez-Porro C., Martín S., Mellado E., Ventosa A. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300 [View Article][PubMed]
    [Google Scholar]
  38. Shafiei M., Ziaee A., Amoozegar M. A. 2010; Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem 45:694–699 [View Article]
    [Google Scholar]
  39. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  41. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  42. Ventosa A. 2006; Unusual micro-organisms from unusual habitats: hypersaline environments. In Prokaryotic diversity: mechanisms and significance pp. 223–254 Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  43. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  44. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
  45. Wieser M., Worliczek H., Kämpfer P., Busse H.-J. 2005; Bacillus herbersteinensis sp. nov.. Int J Syst Evol Microbiol 55:2119–2123 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030874-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030874-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error