1887

Abstract

A Gram-positive, moderately halophilic rod, designated X5B, was isolated from saline mud of the hypersaline lake Aran-Bidgol in Iran. Strain X5B was a strictly aerobic, motile bacterium that produced ellipsoidal endospores at a central-subterminal position in non-swollen sporangia. The isolate grew at pH 7.0–10.0 (optimum pH 7.5), at 25–45 °C (optimum 35 °C) and with 2.5–15 % (w/v) NaCl (optimum 5–7.5 %). On the basis of 16S rRNA gene sequences, strain X5B belonged to the genus and showed highest similarity with HS136 (95.6 % 16S rRNA gene sequence similarity) and BH169 (95.5 %). The DNA G+C content was 42.4 mol%. The major cellular fatty acids were anteiso-C and iso-C and the polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three phospholipids and two glycolipids. The diamino acid found in the cell-wall peptidoglycan was -diaminopimelic acid and the isoprenoid quinones were MK-7 (92 %), MK-6 (6 %) and MK-5 (2 %). On the basis of phylogenetic, chemotaxonomic and phenotypic data, a novel species of the genus is proposed, with the name sp. nov. The type strain is X5B ( = IBRC 10446  = DSM 23995).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030874-0
2012-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/811.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030874-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A. , Salehghamari E. , Khajeh K. , Kabiri M. , Naddaf S. . ( 2008; ). Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. . J Basic Microbiol 48:, 160–167. [CrossRef] [PubMed]
    [Google Scholar]
  2. Amoozegar M. A. , Sánchez-Porro C. , Rohban R. , Hajighasemi M. , Ventosa A. . ( 2009; ). Bacillus persepolensis sp. nov., a moderately halophilic bacterium from a hypersaline lake. . Int J Syst Evol Microbiol 59:, 2352–2358. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arahal D. R. , Ventosa A. . ( 2002; ). Moderately halophilic and halotolerant species of Bacillus and related genera. . In Applications and Systematics of Bacillus and Relatives, pp. 83–99. Edited by Berkeley R. , Heyndrickx M. , Logan N. , De Vos P. . . Oxford:: Blackwell;. [CrossRef]
    [Google Scholar]
  4. Baron E. J. , Finegold S. M. . ( 1990; ). Bailey and Scott’s Diagnostic Microbiology, , 8th edn.. St Louis, MO:: Mosby;.
    [Google Scholar]
  5. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  6. de la Haba R. R. , Sánchez-Porro C. , Márquez M. C. , Ventosa A. . ( 2011; ). Taxonomy of halophiles. . In Extremophiles Handbook, pp. 255–308. Edited by Horikoshi K. . . Tokyo:: Springer;. [CrossRef]
    [Google Scholar]
  7. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Groth I. , Schumann P. , Weiss N. , Martin K. , Rainey F. A. . ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef] [PubMed]
    [Google Scholar]
  10. Harrigan W. F. , McCance M. E. . ( 1976; ). Laboratory Methods in Food and Dairy Microbiology. London:: Academic Press;.
    [Google Scholar]
  11. Heyrman J. , Vanparys B. , Logan N. A. , Balcaen A. , Rodríguez-Díaz M. , Felske A. , De Vos P. . ( 2004; ). Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. . Int J Syst Evol Microbiol 54:, 47–57. [CrossRef] [PubMed]
    [Google Scholar]
  12. Heyrman J. , Rodríguez-Díaz M. , Devos J. , Felske A. , Logan N. A. , De Vos P. . ( 2005; ). Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 55:, 111–117. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kämpfer P. , Rosselló-Mora R. , Falsen E. , Busse H.-J. , Tindall B. J. . ( 2006; ). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef] [PubMed]
    [Google Scholar]
  14. Karbalaei-Heidari H. R. , Amoozegar M. A. , Hajighasemi M. , Ziaee A. A. , Ventosa A. . ( 2009; ). Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis . . J Ind Microbiol Biotechnol 36:, 21–27. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim O. S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y.S. , Lee J.-H. , Yi H. , Won S. , Chun J. . ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721.[CrossRef]
    [Google Scholar]
  16. Kiran K. K. , Chandra T. S. . ( 2008; ). Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. . Appl Microbiol Biotechnol 77:, 1023–1031. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lim J.-M. , Jeon C. O. , Kim C.-J. . ( 2006a; ). Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. . Int J Syst Evol Microbiol 56:, 2903–2908. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lim J.-M. , Jeon C. O. , Lee J.-C. , Ju Y. J. , Park D.-J. , Kim C.-J. . ( 2006b; ). Bacillus koreensis sp. nov., a spore-forming bacterium, isolated from the rhizosphere of willow roots in Korea. . Int J Syst Evol Microbiol 56:, 59–63. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lim J.-M. , Jeon C. O. , Lee S.-M. , Lee J.-C. , Xu L.-H. , Jiang C.-L. , Kim C.-J. . ( 2006c; ). Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. . Int J Syst Evol Microbiol 56:, 373–377. [CrossRef] [PubMed]
    [Google Scholar]
  20. Logan N. A. , De Vos P. . ( 2009; ). Genus I. Bacillus . . In Bergey’s Manual of Systematic Bacteriology, The Firmicutes, vol. 3, pp. 21–128. Edited by De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K.-H. , Whitman W. B. . . New York:: Springer;.
    [Google Scholar]
  21. Logan N. A. , Berge O. , Bishop A. H. , Busse H.-J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. . & other authors ( 2009; ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef] [PubMed]
    [Google Scholar]
  22. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  23. Margesin R. , Schinner F. . ( 2001; ). Potential of halotolerant and halophilic microorganisms for biotechnology. . Extremophiles 5:, 73–83. [CrossRef] [PubMed]
    [Google Scholar]
  24. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  25. Márquez M. C. , Sánchez-Porro C. , Ventosa A. . ( 2011; ). Halophilic and haloalkaliphilic, aerobic endospore-forming bacteria in soil. . In Endospore-forming Soil Bacteria, pp. 309–339. Edited by Logan N. A. , De Vos P. . . Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  26. Mata J. A. , Martínez-Cánovas J. , Quesada E. , Béjar V. . ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mellado E. , Moore E. R. B. , Nieto J. J. , Ventosa A. . ( 1995; ). Phylogenetic and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina and Deleya salina, and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. . Int J Syst Bacteriol 45:, 712–716.[CrossRef]
    [Google Scholar]
  28. Mellado M. E. , Ventosa A. . ( 2003; ). Biotechnological potential of moderately and extremely halophilic microorganisms. . In Microorganisms for Health Care, Food and Enzyme Production, pp. 233–256. Edited by Barredo J. L. . . Kerala:: Research Signpost;.
    [Google Scholar]
  29. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  30. Monciardini P. , Cavaletti L. , Schumann P. , Rohde M. , Donadio S. . ( 2003; ). Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria . . Int J Syst Evol Microbiol 53:, 569–576. [CrossRef] [PubMed]
    [Google Scholar]
  31. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  32. Priest F. G. , Goodfellow M. , Todd C. . ( 1988; ). A numerical classification of the genus Bacillus . . J Gen Microbiol 134:, 1847–1882.[PubMed]
    [Google Scholar]
  33. Quesada E. , Ventosa A. , Ruiz-Berraquero F. , Ramos-Cormenzana A. . ( 1984; ). Deleya halophila, a new species of moderately halophilic bacteria. . Int J Syst Bacteriol 34:, 287–292. [CrossRef]
    [Google Scholar]
  34. Rhuland L. E. , Work E. , Denman R. F. , Hoare D. S. . ( 1955; ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  35. Rohban R. , Amoozegar M. A. , Ventosa A. . ( 2009; ). Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. . J Ind Microbiol Biotechnol 36:, 333–340. [CrossRef] [PubMed]
    [Google Scholar]
  36. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  37. Sánchez-Porro C. , Martín S. , Mellado E. , Ventosa A. . ( 2003; ). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. . J Appl Microbiol 94:, 295–300. [CrossRef] [PubMed]
    [Google Scholar]
  38. Shafiei M. , Ziaee A. , Amoozegar M. A. . ( 2010; ). Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. . Process Biochem 45:, 694–699. [CrossRef]
    [Google Scholar]
  39. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  40. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  41. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D. , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. . & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ventosa A. . ( 2006; ). Unusual micro-organisms from unusual habitats: hypersaline environments. . In Prokaryotic diversity: mechanisms and significance, pp. 223–254. Edited by Logan N. A. , Lappin-Scott H. M. , Oyston P. C. F. . . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  43. Ventosa A. , Quesada E. , Rodriguez-Valera F. , Ruiz-Berraquero F. , Ramos-Cormenzana A. . ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  44. Ventosa A. , Nieto J. J. , Oren A. . ( 1998; ). Biology of moderately halophilic aerobic bacteria. . Microbiol Mol Biol Rev 62:, 504–544.[PubMed]
    [Google Scholar]
  45. Wieser M. , Worliczek H. , Kämpfer P. , Busse H.-J. . ( 2005; ). Bacillus herbersteinensis sp. nov.. Int J Syst Evol Microbiol 55:, 2119–2123. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030874-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030874-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error