1887

Abstract

A Gram-staining-negative, aerobic to microaerophilic, rod-shaped, red-coloured bacterium, strain T4, was isolated from a freshwater pipe on Tenerife island. A polyphasic taxonomic study was performed in order to characterize the strain in detail. The isolate is surrounded by a slime capsule, occurs singly, in the form of short chains, or in aggregates, and exhibits catalase and oxidase activities. Growth was observed at 15–42 °C. Optimum growth occurred at pH 8 with mono- and disaccharides, followed by polysaccharides and deoxysaccharides, but the bacterium utilized only a restricted spectrum of alcohols, alditols, amides, amines, carboxylic acids and amino acids. Strain T4 tolerated concentrations of 0–4 % (w/v) NaCl and contained MK-7 as predominant isoprenoid quinone as well as carotenoids, but lacked pigments of the flexirubin type. The predominant fatty acids were iso-C (32.2 %), summed feature 3 (Cω6 and/or Cω7; 22.5 %), and iso-C 3-OH (7.9 %). Major polar lipids were phosphatidylethanolamine, phospholipids, aminophospholipids and other lipids of unknown character. The DNA GC content was approximately 41.8 mol%. The sequence of the 16S-rRNA gene assigned strain T4 to the CFB group, forming a coherent cluster with species of the genus with the highest similarity of 98.8 % to A8-7. DNA–DNA hybridization revealed 37.5 % relatedness to strain A8-7. Based on morphological, physiological and molecular properties as well as on phylogenetic distinctiveness, strain T4 should be placed into the genus as a novel species, for which the name sp. nov. (type strain T4  = DSM 19759  = LMG 24398  = NCIMB 14399) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030809-0
2012-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/675.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030809-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Fujiwara T. 2007; Chimaereicella boritolerans sp. nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil. Int J Syst Evol Microbiol 57:986–992 [View Article][PubMed]
    [Google Scholar]
  2. Bast E. 2001; Mikrobiologische Methoden: Eine Einführung in grundlegende Arbeitstechniken, 2nd edn. Heidelberg & Berlin: Spektrum Akademischer (in German);
    [Google Scholar]
  3. Bowman J. P., Nichols C. M., Gibson J. A. E. 2003; Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53:1343–1355 [View Article][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  5. Copa-Patiño J. L., Arenas M., Soliveri J., Sánchez-Porro C., Ventosa A. 2008; Algoriphagus hitonicola sp. nov., isolated from an athalassohaline lagoon. Int J Syst Evol Microbiol 58:424–428 [View Article][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  10. Güde H. 1980; Occurrence of cytophagas in sewage plants. Appl Environ Microbiol 39:756–763[PubMed]
    [Google Scholar]
  11. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  12. Kang S.-J., Choi N.-S., Choi J.-H., Lee J.-S., Yoon J.-H., Song J.-J. 2009; Brevundimonas naejangsanensis sp. nov., a proteolytic bacterium isolated from soil, and reclassification of Mycoplana bullata into the genus Brevundimonas as Brevundimonas bullata comb. nov.. Int J Syst Evol Microbiol 59:3155–3160 [View Article][PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  14. Liu Y., Li H., Jiang J. T., Liu Y. H., Song X. F., Xu C. J., Liu Z. P. 2009; Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 59:1759–1763 [View Article][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  17. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  18. Moore E. R. B., Arnscheidt A., Krüger A., Strömpl C., Mau M. 1999; Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual 1.6.1 pp. 1–15 Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J. Dordrecht: Kluwer Academic Press;
    [Google Scholar]
  19. Nedashkovskaya O. I., Vancanneyt M., Van Trappen S., Vandemeulebroecke K., Lysenko A. M., Rohde M., Falsen E., Frolova G. M., Mikhailov V. V., Swings J. 2004; Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophila Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. nov. and emended descriptions of the genera Algoriphagus Bowman et al. 2003 and Hongiella Yi and Chun 2004. Int J Syst Evol Microbiol 54:1757–1764 [View Article][PubMed]
    [Google Scholar]
  20. Nedashkovskaya O. I., Kim S. B., Kwon K. K., Shin D. S., Luo X., Kim S. J., Mikhailov V. V. 2007; Proposal of Algoriphagus vanfongensis sp. nov., transfer of members of the genera Hongiella Yi and Chun 2004 emend. Nedashkovskaya et al. 2004 and Chimaereicella Tiago et al. 2006 to the genus Algoriphagus, and emended description of the genus Algoriphagus Bowman et al. 2003 emend. Nedashkovskaya et al. 2004. Int J Syst Evol Microbiol 57:1988–1994 [View Article][PubMed]
    [Google Scholar]
  21. Neilan B. A. 1995; Identification and phylogenetic analysis of toxigenic cyanobacteria by multiplex randomly amplified polymorphic DNA PCR. Appl Environ Microbiol 61:2286–2291[PubMed]
    [Google Scholar]
  22. Park S., Kang S.-J., Oh K.-H., Oh T.-K., Yoon J.-H. 2010; Algoriphagus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 60:200–204 [View Article][PubMed]
    [Google Scholar]
  23. Pate J. L., Ordal E. J. 1967; The fine structure of Chondrococcus columnaris. 3. The surface layers of Chondrococcus columnaris . J Cell Biol 35:37–51 [View Article][PubMed]
    [Google Scholar]
  24. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  26. Schreier J. B. 1969; Modification of deoxyribonuclease test medium for rapid identification of Serratia marcescens . Am J Clin Pathol 51:711–716[PubMed]
    [Google Scholar]
  27. Smibert R. M., Krieg N. R. 1994; Phenotypic Characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  29. Süßmuth R., Eberspächer J., Haag R., Springer W. 1987 Biochemisch-mikrobiologisches Praktikum Stuttgart: Thieme;
    [Google Scholar]
  30. Tiago I., Mendes V., Pires C., Morais P. V., Veríssimo A. 2006; Chimaereicella alkaliphila gen. nov., sp. nov., a Gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 29:100–108 [View Article][PubMed]
    [Google Scholar]
  31. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  32. Van Trappen S., Vandecandelaere I., Mergaert J., Swings J. 2004; Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:1969–1973 [View Article][PubMed]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  34. Yassin A. F., Hupfer H., Siering C., Busse H.-J. 2010; Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 60:1993–1998 [View Article][PubMed]
    [Google Scholar]
  35. Yi H., Chun J. 2004; Hongiella mannitolivorans gen. nov., sp. nov., Hongiella halophila sp. nov. and Hongiella ornithinivorans sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54:157–162 [View Article][PubMed]
    [Google Scholar]
  36. Yoon J.-H., Yeo S.-H., Oh T.-K. 2004; Hongiella marincola sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54:1845–1848 [View Article][PubMed]
    [Google Scholar]
  37. Yoon J.-H., Kang S.-J., Jung S.-Y., Lee C.-H., Oh T.-K. 2005a; Algoriphagus yeomjeoni sp. nov., isolated from a marine solar saltern in the Yellow Sea, Korea. Int J Syst Evol Microbiol 55:865–870 [View Article][PubMed]
    [Google Scholar]
  38. Yoon J.-H., Kang S.-J., Oh T.-K. 2005b; Algoriphagus locisalis sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 55:1635–1639 [View Article][PubMed]
    [Google Scholar]
  39. Yoon J.-H., Lee M.-H., Kang S.-J., Oh T.-K. 2006; Algoriphagus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:777–780 [View Article][PubMed]
    [Google Scholar]
  40. Young C.-C., Lin S.-Y., Arun A. B., Shen F.-T., Chen W.-M., Rekha P. D., Langer S., Busse H.-J., Wu Y.-H., Kämpfer P. 2009; Algoriphagus olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 59:2909–2915 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030809-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030809-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error