1887

Abstract

A Gram-stain-positive, non-spore-forming bacterium (GW5-5797) was isolated on soil extract agar from sand collected at a depth of 5 m in the Caribbean Sea near Grenada. 16S rRNA gene sequence analysis and similarity studies showed that strain GW5-5797 belongs to the genus , and is most closely related to N2-11 (99.2 % similarity) and 04-5195 (99.2 %) and more distantly related to 202GMO (98.6 %) and other species. Strain GW5-5797 could be distinguished from all other recognized species by sequence similarity values less than 98.5 %. The peptidoglycan diamino acid was -diaminopimelic acid. Strain GW5-5797 exhibited a quinone system with the predominant compounds MK-8(Hω-cyclo) and MK-8(H). The polar lipid profile of GW5-5797 consisted of the major compounds diphosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid, moderate amounts of phosphatidylinositol and a phosphatidylinositol mannoside and minor amounts of several lipids including a second phosphatidylinositol mannoside. The polyamine pattern contained the major compound spermine and moderate amounts of spermidine. The major fatty acids were C Cω9 and 10-methyl C. These chemotaxonomic traits are in excellent agreement with those of other species. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain GW5-5797 from the most closely related species, showing 16S rRNA gene sequence similarities >98.5 %. Strain GW5-5797 therefore merits separate species status, and we propose the name sp. nov., with the type strain GW5-5797 ( = CCUG 60970  = CIP 110294).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030684-0
2012-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/693.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030684-0&mimeType=html&fmt=ahah

References

  1. Altenburger P. , Kämpfer P. , Makristathis A. , Lubitz W. , Busse H.-J. . ( 1996; ). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Altenburger P. , Kämpfer P. , Akimov V. N. , Lubitz W. , Busse H.-J. . ( 1997; ). Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium and Tsukamurella . . Int J Syst Bacteriol 47:, 270–277. [CrossRef]
    [Google Scholar]
  3. Busse H.-J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8.[CrossRef]
    [Google Scholar]
  4. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Goodfellow M. , Isik K. , Yates E. . ( 1999; ). Actinomycete systematics: an unfinished synthesis. . Nova Acta Leopold NF80:, 47–82.
    [Google Scholar]
  7. Jannat-Khah D. , Kroppenstedt R. M. , Klenk H.-P. , Spröer C. , Schumann P. , Lasker B. A. , Steigerwalt A. G. , Hinrikson H. P. , Brown J. M. . ( 2010; ). Nocardia mikamii sp. nov., isolated from human pulmonary infections in the USA. . Int J Syst Evol Microbiol 60:, 2272–2276. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kaewkla O. , Franco C. M. M. . ( 2010; ). Nocardia callitridis sp. nov., an endophytic actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. . Int J Syst Evol Microbiol 60:, 1532–1536. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  10. Kämpfer P. , Steiof M. , Dott W. . ( 1991; ). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  11. Kämpfer P. , Dreyer U. , Neef A. , Dott W. , Busse H.-J. . ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 53:, 93–97. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lamm A. S. , Khare A. , Conville P. , Lau P. C. K. , Bergeron H. , Rosazza J. P. N. . ( 2009; ). Nocardia iowensis sp. nov., an organism rich in biocatalytically important enzymes and nitric oxide synthase. . Int J Syst Evol Microbiol 59:, 2408–2414. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  15. Lechevalier M. P. , De Bièvre C. , Lechevalier H. . ( 1977; ). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  16. Minnikin D. E. , Patel P. V. , Alshamaony L. , Goodfellow M. . ( 1977; ). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  17. Moser B. D. , Klenk H. P. , Schumann P. , Pötter G. , Lasker B. A. , Steigerwalt A. G. , Hinrikson H. P. , Brown J. M. . ( 2011; ). Nocardia niwae sp. nov., isolated from human pulmonary sources. . Int J Syst Evol Microbiol 61:, 438–442. [CrossRef] [PubMed]
    [Google Scholar]
  18. Rodríguez-Nava V. , Couble A. , Molinard C. , Sandoval H. , Boiron P. , Laurent F. . ( 2004; ). Nocardia mexicana sp. nov., a new pathogen isolated from human mycetomas. . J Clin Microbiol 42:, 4530–4535. [CrossRef] [PubMed]
    [Google Scholar]
  19. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Schleifer K. H. . ( 1985; ). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  21. Stolz A. , Busse H.-J. , Kämpfer P. . ( 2007; ). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef] [PubMed]
    [Google Scholar]
  22. Sun W. , Zhang Y. Q. , Huang Y. , Zhang Y. Q. , Yang Z. Y. , Liu Z. H. . ( 2009; ). Nocardia jinanensis sp. nov., an amicoumacin B-producing actinomycete. . Int J Syst Evol Microbiol 59:, 417–420. [CrossRef] [PubMed]
    [Google Scholar]
  23. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  24. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tindall B. J. . ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130.[CrossRef]
    [Google Scholar]
  26. Tindall B. J. . ( 1990b; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  27. Williams S. T. , Goodfellow M. , Alderson G. , Wellington E. M. H. , Sneath P. H. A. , Sackin M. J. . ( 1983; ). Numerical classification of Streptomyces and related genera. . J Gen Microbiol 129:, 1742–1813.
    [Google Scholar]
  28. Xing K. , Qin S. , Fei S.-M. , Lin Q. , Bian G.-K. , Miao Q. , Wang Y. , Cao C.-L. , Tang S.-K. . & other authors ( 2011; ). Nocardia endophytica sp. nov., an endophytic actinomycete isolated from the oil-seed plant Jatropha curcas L.. Int J Syst Evol Microbiol 61:, 1854–1858. [CrossRef] [PubMed]
    [Google Scholar]
  29. Xu P. , Li W.-J. , Tang S.-K. , Jiang Y. , Chen H.-H. , Xu L.-H. , Jiang C. L. . ( 2005; ). Nocardia polyresistens sp. nov.. Int J Syst Evol Microbiol 55:, 1465–1470. [CrossRef] [PubMed]
    [Google Scholar]
  30. Zhao G.-Z. , Li J. , Zhu W.-Y. , Klenk H.-P. , Xu L.-H. , Li W.-J. . ( 2011; ). Nocardia artemisiae sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Artemisia annua L.. Int J Syst Evol Microbiol 61:, 2933–2937. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030684-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030684-0
Loading

Data & Media loading...

Supplements

Supplementary figure 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error