sp. nov., isolated from deep-sea sediment Free

Abstract

Strain WPAGA1 was isolated from marine sediment of the west Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus . Strain WPAGA1 exhibited highest 16S rRNA gene sequence similarity with NBRC 100898 (98.1 %) and lower sequence similarity with IFO 15982 (94.6 %) and other members of the genus (<94.2 %). DNA–DNA relatedness studies showed that strain WPAGA1 was distinct from NBRC 100898 and NBRC 15982 (43±4 % and 32±2 % relatedness values, respectively). Strain WPAGA1 could be distinguished from all known members of the genus by a number of phenotypic features. However, the dominant fatty acids of strain WPAGA1 (iso-C, C and Cω6,9,12,15), the major polyamine (cadaverine) and the G+C content of the chromosomal DNA (32.9 mol%) were consistent with those of members of the genus . Based on phenotypic and chemotaxonomic features and 16S rRNA gene sequences, strain WPAGA1 can be assigned to the genus as a representative of a novel species, for which the name sp. nov. is proposed; the type strain is WPAGA1 ( = CCTCC AB 2010364 = LMG 26175 = DSM 24597 = MCCC 1A06425).

Funding
This study was supported by the:
  • China Ocean Mineral Resources R & D Association (Award DY115-02-2-04)
  • Hi-Tech Research and Development of China (Award 2007AA091407)
  • Marine Scientific Research Special Foundation for Public Sector Program (Award 200805050)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030676-0
2012-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/937.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030676-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1995 Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. New York: Wiley;
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  4. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes . ( 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  5. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  6. Coram N. J., Rawlings D. E. 2002; Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40°C. Appl Environ Microbiol 68:838–845 [View Article][PubMed]
    [Google Scholar]
  7. Dong X.-Z., Cai M.-Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press; (English translation)
    [Google Scholar]
  8. Garrity G. M., Holt J. G. 2001; Taxonomic outline of the archaea and bacteria. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 1 pp. 155–166 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  9. Hosoya S., Yokota A. 2007; Flammeovirga kamogawensis sp. nov., isolated from coastal seawater in Japan. Int J Syst Evol Microbiol 57:1327–1330 [View Article][PubMed]
    [Google Scholar]
  10. Hosoya S., Arunpairojana V., Suwannachart C., Kanjana-Opas A., Yokota A. 2006; Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand. Int J Syst Evol Microbiol 56:2931–2935 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Liu C., Shao Z. 2005; Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55:1181–1186 [View Article][PubMed]
    [Google Scholar]
  13. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479:297–306 [View Article][PubMed]
    [Google Scholar]
  14. Nakagawa Y., Hamana K., Sakane T., Yamasato K. 1997; Reclassification of Cytophaga aprica (Lewin 1969) Reichenbach 1989 in Flammeovirga gen. nov. as Flammeovirga aprica comb. nov. and of Cytophaga diffluens (ex Stanier 1940; emend. Lewin 1969) Reichenbach 1989 in Persicobacter gen. nov. as Persicobacter diffluens comb. nov.. Int J Syst Bacteriol 47:220–223 [View Article]
    [Google Scholar]
  15. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  16. Rzhetsky A., Nei M. 1993; Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095[PubMed]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  18. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  19. Shieh W. Y., Chen Y.-W., Chaw S.-M., Chiu H.-H. 2003; Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 53:479–484 [View Article][PubMed]
    [Google Scholar]
  20. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  21. Takahashi M., Suzuki K., Nakagawa Y. 2006; Emendation of the genus Flammeovirga and Flammeovirga aprica with the proposal of Flammeovirga arenaria nom. rev., comb. nov. and Flammeovirga yaeyamensis sp. nov.. Int J Syst Evol Microbiol 56:2095–2100 [View Article][PubMed]
    [Google Scholar]
  22. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  23. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  24. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  25. Tønjum T., Welty D. B., Jantzen E., Small P. L. 1998; Differentiation of Mycobacterium ulcerans, M. marinum, and M. haemophilum: mapping of their relationships to M. tuberculosis by fatty acid profile analysis, DNA–DNA hybridization, and 16S rRNA gene sequence analysis. J Clin Microbiol 36:918–925[PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. . ( 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030676-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030676-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed