1887

Abstract

An aerobic endospore-forming bacillus (NVH 391-98) was isolated during a severe food poisoning outbreak in France in 1998, and four other similar strains have since been isolated, also mostly from food poisoning cases. Based on 16S rRNA gene sequence similarity, these strains were shown to belong to the Group (over 97 % similarity with the current Group species) and phylogenetic distance from other validly described species of the genus was less than 95 %. Based on 16S rRNA gene sequence similarity and MLST data, these novel strains were shown to form a robust and well-separated cluster in the Group, and constituted the most distant cluster from species of this Group. Major fatty acids (iso-C, C, iso-C, anteiso-C, iso-C, iso-C) supported the affiliation of these strains to the genus , and more specifically to the Group. NVH 391-98 taxon was more specifically characterized by an abundance of iso-C and low amounts of iso-C compared with other members of the Group. Genome similarity together with DNA–DNA hybridization values and physiological and biochemical tests made it possible to genotypically and phenotypically differentiate NVH 391-98 taxon from the six current Group species. NVH 391-98 therefore represents a novel species, for which the name sp. nov. is proposed, with the type strain NVH 391-98 ( = DSM 22905 = CIP 110041)

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030627-0
2013-01-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/31.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030627-0&mimeType=html&fmt=ahah

References

  1. Afchain A. L., Carlin F., Nguyen-The C., Albert I.. ( 2008;). Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods. . Int J Food Microbiol 128:, 165–173. [CrossRef][PubMed]
    [Google Scholar]
  2. Auger S., Galleron N., Bidnenko E., Ehrlich S. D., Lapidus A., Sorokin A.. ( 2008;). The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains. . Appl Environ Microbiol 74:, 1276–1280. [CrossRef][PubMed]
    [Google Scholar]
  3. Brillard J., Lereclus D.. ( 2004;). Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain. . Microbiology 150:, 2699–2705. [CrossRef][PubMed]
    [Google Scholar]
  4. Brillard J., Jéhanno I., Dargaignaratz C., Barbosa I., Ginies C., Carlin F., Fedhila S., Nguyen-the C., Broussolle V., Sanchis V.. ( 2010;). Identification of Bacillus cereus genes specifically expressed during growth at low temperatures. . Appl Environ Microbiol 76:, 2562–2573. [CrossRef][PubMed]
    [Google Scholar]
  5. Candelon B., Guilloux K., Ehrlich S. D., Sorokin A.. ( 2004;). Two distinct types of rRNA operons in the Bacillus cereus group. . Microbiology 150:, 601–611. [CrossRef][PubMed]
    [Google Scholar]
  6. Claus D., Berkeley R. C. W.. ( 1986;). Genus Bacillus Cohn 1872, 174AL. . In Bergey’s Manual Of Systematic Bacteriology, pp. 1105–1139. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore, Md:: Williams & Wilkins;.
    [Google Scholar]
  7. Duport C., Thomassin S., Bourel G., Schmitt P.. ( 2004;). Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. . Arch Microbiol 182:, 90–95. [CrossRef][PubMed]
    [Google Scholar]
  8. Edgar R. C.. ( 2004;). MUSCLE: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Fagerlund A., Ween O., Lund T., Hardy S. P., Granum P. E.. ( 2004;). Genetic and functional analysis of the cytK family of genes in Bacillus cereus. . Microbiology 150:, 2689–2697. [CrossRef][PubMed]
    [Google Scholar]
  11. Fagerlund A., Brillard J., Fürst R., Guinebretière M. H., Granum P. E.. ( 2007;). Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. . BMC Microbiol 7:, 43. [CrossRef][PubMed]
    [Google Scholar]
  12. Faille C., Tauveron G., Le Gentil-Lelièvre C., Slomianny C.. ( 2007;). Occurrence of Bacillus cereus spores with a damaged exosporium: consequences on the spore adhesion on surfaces of food processing lines. . J Food Prot 70:, 2346–2353.[PubMed]
    [Google Scholar]
  13. Gascuel O.. ( 1997;). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. . Mol Biol Evol 14:, 685–695. [CrossRef][PubMed]
    [Google Scholar]
  14. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  15. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef][PubMed]
    [Google Scholar]
  16. Guinebretière M. H., Fagerlund A., Granum P. E., Nguyen-The C.. ( 2006;). Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. . FEMS Microbiol Lett 259:, 74–80. [CrossRef][PubMed]
    [Google Scholar]
  17. Guinebretière M. H., Thompson F. L., Sorokin A., Normand P., Dawyndt P., Ehling-Schulz M., Svensson B., Sanchis V., Nguyen-The C.. & other authors ( 2008;). Ecological diversification in the Bacillus cereus Group. . Environ Microbiol 10:, 851–865. [CrossRef][PubMed]
    [Google Scholar]
  18. Guinebretière M. H., Velge P., Couvert O., Carlin F., Debuyser M. L., Nguyen-The C.. ( 2010;). Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. . J Clin Microbiol 48:, 3388–3391. [CrossRef][PubMed]
    [Google Scholar]
  19. Helgason E., Okstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A. B.. ( 2000;). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis–one species on the basis of genetic evidence. . Appl Environ Microbiol 66:, 2627–2630. [CrossRef][PubMed]
    [Google Scholar]
  20. Hill K. K., Ticknor L. O., Okinaka R. T., Asay M., Blair H., Bliss K. A., Laker M., Pardington P. E., Richardson A. P.. & other authors ( 2004;). Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. . Appl Environ Microbiol 70:, 1068–1080. [CrossRef][PubMed]
    [Google Scholar]
  21. Houry A., Briandet R., Aymerich S., Gohar M.. ( 2010;). Involvement of motility and flagella in Bacillus cereus biofilm formation. . Microbiology 156:, 1009–1018. [CrossRef][PubMed]
    [Google Scholar]
  22. Kämpfer P.. ( 1994;). Limits and Possibilities of Total Fatty-Acid Analysis for Classification and Identification of Bacillus Species. . Syst Appl Microbiol 17:, 86–98. [CrossRef]
    [Google Scholar]
  23. Lapidus A., Goltsman E., Auger S., Galleron N., Ségurens B., Dossat C., Land M. L., Broussolle V., Brillard J.. & other authors ( 2008;). Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. . Chem Biol Interact 171:, 236–249. [CrossRef][PubMed]
    [Google Scholar]
  24. Lechner S., Mayr R., Francis K. P., Prüss B. M., Kaplan T., Wiessner-Gunkel E., Stewart G. S., Scherer S.. ( 1998;). Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. . Int J Syst Bacteriol 48:, 1373–1382. [CrossRef][PubMed]
    [Google Scholar]
  25. Logan N. A., Berkeley R. C. W.. ( 1984;). Identification of Bacillus strains using the API system. . J Gen Microbiol 130:, 1871–1882.[PubMed]
    [Google Scholar]
  26. Logan N. A., De Vos P.. ( 2009;). Genus Bacillus Cohn 1872. . In Bergey's Manual of Systematic Bacteriology 2nd edn, pp. 21–128. Edited by De Vos P., Garrity G. M.., D. Jones N. R., Frieg W., LudWig F. A., Rainey K.-H., Schleifer W. B., Whitman.. New York:: Springer Dordrecht Heidelberg London;.
    [Google Scholar]
  27. Logan N. A., Carman J. A., Melling J., Berkeley R. C. W.. ( 1985;). Identification of Bacillus anthracis by API tests. . J Med Microbiol 20:, 75–85. [CrossRef][PubMed]
    [Google Scholar]
  28. Logan N. A., Lebbe L., Hoste B., Goris J., Forsyth G., Heyndrickx M., Murray B. L., Syme N., Wynn-Williams D. D., De Vos P.. ( 2000;). Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov.. Int J Syst Evol Microbiol 50:, 1741–1753.[PubMed]
    [Google Scholar]
  29. Lund T., De Buyser M. L., Granum P. E.. ( 2000;). A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. . Mol Microbiol 38:, 254–261. [CrossRef][PubMed]
    [Google Scholar]
  30. Markowitz V. M., Chen I. A., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Anderson I., Lykidis A.. & other authors ( 2010;). The Integrated Microbial Genomes system: an expanding comparative analysis resource. . Nucleic Acids Res 38: (Database), D382–D390. [CrossRef][PubMed]
    [Google Scholar]
  31. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise Measurement of the G+C Content of Deoxyribonucleic-Acid by High-Performance Liquid-Chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  32. Nakamura L. K.. ( 1994;). DNA relatedness among Bacillus thuringiensis serovars. . Int J Syst Bacteriol 44:, 125–129. [CrossRef][PubMed]
    [Google Scholar]
  33. Nakamura L. K.. ( 1998;). Bacillus pseudomycoides sp. nov.. Int J Syst Bacteriol 48:, 1031–1035. [CrossRef][PubMed]
    [Google Scholar]
  34. Nakamura L. K., Jackson M. A.. ( 1995;). Clarification of the taxonomy of Bacillus mycoides. . Int J Syst Bacteriol 45:, 46–49. [CrossRef]
    [Google Scholar]
  35. Rau J., Perz R., Klittich G., Contzen M.. ( 2009;). [Cereulide forming presumptive Bacillus cereus strains from food–differentiating analyses using cultural methods, LC-MS/MS, PCR, and infrared spectroscopy in consideration of thermotolerant isolates]. . Berl Munch Tierarztl Wochenschr 122:, 25–36.[PubMed]
    [Google Scholar]
  36. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. ( 1955;). The behaviour of the isomers of α, ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  37. Rosenfeld E., Duport C., Zigha A., Schmitt P.. ( 2005;). Characterization of aerobic and anaerobic vegetative growth of the food-borne pathogen Bacillus cereus F4430/73 strain. . Can J Microbiol 51:, 149–158. [CrossRef][PubMed]
    [Google Scholar]
  38. Smith N. R., Gordon R. E., Clarck F. E.. ( 1952;). Aerobic Spore-forming Bacteria Monograph no 16. Wsahington, DC:: US Department of Agriculture;.
    [Google Scholar]
  39. Somerville H. J., Jones M. L.. ( 1972;). DNA competition studies within the Bacillus cereus group of bacilli. . J Gen Microbiol 73:, 257–265. [CrossRef][PubMed]
    [Google Scholar]
  40. Song Y., Yang R., Guo Z., Zhang M., Wang X., Zhou F.. ( 2000;). Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. . J Microbiol Methods 39:, 225–241. [CrossRef][PubMed]
    [Google Scholar]
  41. Tauveron G., Slomianny C., Henry C., Faille C.. ( 2006;). Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment. . Int J Food Microbiol 110:, 254–262. [CrossRef][PubMed]
    [Google Scholar]
  42. Tourasse N. J., Helgason E., Økstad O. A., Hegna I. K., Kolstø A. B.. ( 2006;). The Bacillus cereus group: novel aspects of population structure and genome dynamics. . J Appl Microbiol 101:, 579–593. [CrossRef][PubMed]
    [Google Scholar]
  43. Turnbull P. C. B., Jackson B. J., Hill K. K., Keim P., Kolsto A. B., Beecher D. J.. ( 2002;). Longstanding taxonomic enigmas within the ‘Bacillus Cereus Group’ are on the verge of being resolved by far-reaching molecular developments: forecasts on the possible outcome by an ad hoc team. . In Applications and Systematics of Bacillus and Relatives, pp. 23–36. Edited by Berkeley R. C. W., Heyndrickx M., Logan N. A., De Vos P... Oxford, UK:: Blackwell Science;. [CrossRef]
    [Google Scholar]
  44. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M.. ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030627-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030627-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error