1887

Abstract

A Gram-negative, spiral or rod-shaped, non-spore-forming diazotrophic bacterium, designated CC-Nfb-7, was isolated from agricultural soil in Yunlin County, Taiwan. 16S rRNA gene sequence analysis showed that strain CC-Nfb-7 was most closely related to DSM 1690 (97.4 % 16S rRNA gene sequence similarity), IMMIB AFH-6 (96.8 %) and JCM 21588 (96.6 %); <96.5 % 16S rRNA gene sequence similarity was found with all other members of the genus . DNA–DNA relatedness between strain CC-Nfb-7 and DSM 1690, DSM 19657 and JCM 21588 was 38.9, 30.1 and 31.8 %, respectively. The respiratory quinone was ubiquinone Q-10. The major fatty acids were summed feature 8 (consisting of Cω7 and/or Cω6), summed feature 3 (consisting of Cω7 and/or Cω6), summed feature 2 (consisting of C 3-OH and/or iso-C I), C, C 2-OH and C 3-OH. The polar lipids consisted mainly of phosphatidylglycerol, phosphatidylcholine and one unidentified phospholipid. Furthermore, moderate amounts of phosphatidylethanolamine, phosphatidyldimethylethanolamine and one unidentified aminophospholipid were also detected. Strain CC-Nfb-7 could be distinguished from members of phylogenetically related species by differences in phenotypic properties. On the basis of morphological, chemotaxonomic and phylogenetic data, strain CC-Nfb-7 represents a novel species within the genus , for which we propose the name sp. nov. The type strain is CC-Nfb-7 ( = BCRC 80273 = JCM 17639 = DSM 24137).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030585-0
2012-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1185.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030585-0&mimeType=html&fmt=ahah

References

  1. Aziz A., Martin-Tanguy J., Larher F.. ( 1997;). Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. . Plant Growth Regul 21:, 153–163. [CrossRef]
    [Google Scholar]
  2. Bally R., Thomas-Bauzon D., Heulin T., Balandreau J., Richard C., De Ley J.. ( 1983;). Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. . Can J Microbiol 29:, 881–887. [CrossRef]
    [Google Scholar]
  3. Bashan Y., Holguin G., de-Bashan L. E.. ( 2004;). Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). . Can J Microbiol 50:, 521–577. [CrossRef][PubMed]
    [Google Scholar]
  4. Ben Dekhil S., Cahill M., Stackebrandt E., Sly L. I.. ( 1997;). Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov.. Syst Appl Microbiol 20:, 72–77. [CrossRef]
    [Google Scholar]
  5. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  6. Döbereiner J., Day J. M.. ( 1976;). Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. . In Proceedings of the First International Symposium on N2 Fixation, pp. 518–538. Edited by Newton W. E., Nyman C. J.. Pullman:: Washington State University Press;.
    [Google Scholar]
  7. Eckert B., Weber O. B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A.. ( 2001;). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. . Int J Syst Evol Microbiol 51:, 17–26.[PubMed]
    [Google Scholar]
  8. Falk E. C., Döbereiner J., Johnson J. L., Krieg N. R.. ( 1985;). Deoxyribonucleic acid homology of Azospirillum amazonense Magalhães et al. 1984 and emendation of the description of the genus Azospirillum. . Int J Syst Bacteriol 35:, 117–118. [CrossRef]
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  12. Hardy R., Burns R. C., Holsten R. D.. ( 1973;). Application of the acetylene-ethylene assay for measurement of nitrogen fixation. . Soil Biol Biochem 5:, 47–81. [CrossRef]
    [Google Scholar]
  13. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y.. ( 1998;). Sequencing multimegabase-template DNA with BigDye terminator chemistry. . Genome Res 8:, 557–561.[PubMed]
    [Google Scholar]
  14. Helsel L. O., Hollis D. G., Steigerwalt A. G., Levett P. N.. ( 2006;). Reclassification of Roseomonas fauriae Rihs et al. 1998 as a later heterotypic synonym of Azospirillum brasilense Tarrand et al. 1979. . Int J Syst Evol Microbiol 56:, 2753–2755. [CrossRef][PubMed]
    [Google Scholar]
  15. Hung M.-H., Bhagwath A. A., Shen F.-T., Devasya R. P., Young C.-C.. ( 2005;). Indigenous rhizobia associated with native shrubby legumes in Taiwan. . Pedobiologia (Jena) 49:, 577–584. [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  17. Khammas K. M., Ageron E., Grimont P. A. D., Kaiser P.. ( 1989;). Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. . Res Microbiol 140:, 679–693.[PubMed]
    [Google Scholar]
  18. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  19. Kirchhof G., Reis V. M., Baldan J. I., Eckert B., Döbereiner J., Hartmann A.. ( 1997;). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. . Plant Soil 194:, 45–55. [CrossRef]
    [Google Scholar]
  20. Koch B., Evans H. J.. ( 1966;). Reduction of acetylene to ethylene by soybean root nodules. . Plant Physiol 41:, 1748–1750. [CrossRef][PubMed]
    [Google Scholar]
  21. Ladha J. K., So R. B., Watanabe I.. ( 1987;). Composition of Azospirillum species associated with wetland rice plants grown in different soils. . Plant Soil 102:, 127–129. [CrossRef]
    [Google Scholar]
  22. Lavrinenko K., Chernousova E., Gridneva E., Dubinina G., Akimov V., Kuever J., Lysenko A., Grabovich M.. ( 2010;). Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. . Int J Syst Evol Microbiol 60:, 2832–2837. [CrossRef][PubMed]
    [Google Scholar]
  23. Lin S.-Y., Young C.-C., Hupfer H., Siering C., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F.. ( 2009;). Azospirillum picis sp. nov., isolated from discarded tar. . Int J Syst Evol Microbiol 59:, 761–765. [CrossRef][PubMed]
    [Google Scholar]
  24. Mehnaz S., Lazarovits G.. ( 2006;). Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under green house conditions. . Microb Ecol 51:, 326–335. [CrossRef][PubMed]
    [Google Scholar]
  25. Mehnaz S., Weselowski B., Lazarovits G.. ( 2007a;). Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. . Int J Syst Evol Microbiol 57:, 620–624. [CrossRef][PubMed]
    [Google Scholar]
  26. Mehnaz S., Weselowski B., Lazarovits G.. ( 2007b;). Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. . Int J Syst Evol Microbiol 57:, 2805–2809. [CrossRef][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  29. Murray R. G. E., Doetsch R. N., Robinow F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Okon Y., Itzigsohn R.. ( 1992;). Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. . FEMS Microbiol Lett 103:, 131–139.
    [Google Scholar]
  31. Okon Y., Vanderleyden J.. ( 1997;). Root-associated Azospirillum species can stimulate plants. . ASM News 63:, 366–370.
    [Google Scholar]
  32. Patriquin D. G., Döbereiner J., Jain D. K.. ( 1983;). Sites and processes of association between diazotrophs and grasses. . Can J Microbiol 29:, 900–915. [CrossRef]
    [Google Scholar]
  33. Peng G., Wang H., Zhang G., Hou W., Liu Y., Wang E. T., Tan Z.. ( 2006;). Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. . Int J Syst Evol Microbiol 56:, 1263–1271. [CrossRef][PubMed]
    [Google Scholar]
  34. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  35. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kersters K., Thielemans S., De Ley J.. ( 1987;). Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). . Int J Syst Bacteriol 37:, 43–51. [CrossRef]
    [Google Scholar]
  36. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  37. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  38. Saxena B., Modi M., Modi V. V.. ( 1986;). Isolation and characterization of siderophores from Azospirillum lipoferum D-2. . J Gen Microbiol 132:, 2219–2224.
    [Google Scholar]
  39. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among B. polymyxa, B. macerans, B. azotofixans and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  40. Seshadri S., Muthukumarasamy R., Lakshinarasimhan C., Ignacimuthu S.. ( 2000;). Solubilization of inorganic phosphates by Azospirillum halopraeferans. . Curr Sci 79:, 565–567.
    [Google Scholar]
  41. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  42. Steenhoudt O., Vanderleyden J.. ( 2000;). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. . FEMS Microbiol Rev 24:, 487–506. [CrossRef][PubMed]
    [Google Scholar]
  43. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  44. Tarrand J. J., Krieg N. R., Döbereiner J.. ( 1978;). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov.. Can J Microbiol 24:, 967–980. [CrossRef][PubMed]
    [Google Scholar]
  45. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  46. Thuler D. S., Floh E. I., Handro W., Barbosa H. R.. ( 2003;). Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. . Lett Appl Microbiol 37:, 174–178. [CrossRef][PubMed]
    [Google Scholar]
  47. Tien T. M., Gaskins M. H., Hubbell D. H.. ( 1979;). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). . Appl Environ Microbiol 37:, 1016–1024.[PubMed]
    [Google Scholar]
  48. Watts D., MacBeath J. R.. ( 2001;). Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. . Methods Mol Biol 167:, 153–170.[PubMed]
    [Google Scholar]
  49. Xie C. H., Yokota A.. ( 2005;). Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. . Int J Syst Evol Microbiol 55:, 1435–1438. [CrossRef][PubMed]
    [Google Scholar]
  50. Young C.-C., Hupfer H., Siering C., Ho M.-J., Arun A. B., Lai W.-A., Rekha P. D., Shen F.-T., Hung M.-H.. & other authors ( 2008;). Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 58:, 959–963. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030585-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030585-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error