1887

Abstract

Four Gram-negative, non-spore-forming, slightly halophilic rods (strains SW-62, SW-74, SW-63 and SW-72) with appendages were isolated from a salt lake near Hwajinpo Beach on the East Sea in Korea, and subjected to a polyphasic taxonomic analysis. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains SW-62, SW-74, SW-63 and SW-72 formed a coherent cluster with . Strains SW-62 and SW-74 had the same 16S rRNA gene sequence, as did strains SW-63 and SW-72. The level of 16S rRNA gene sequence similarity between strains SW-62 and SW-63 was 97·0 %. Strains SW-62 and SW-63 exhibited 16S rRNA gene similarity levels of 96·5 and 98·3 %, respectively, with respect to DSM 13258. The predominant isoprenoid quinone found in the four isolates and DSM 13258 was MK-6. The four strains contained iso-C 3-OH, iso-C and iso-C as the major fatty acids. Their DNA G+C contents were 44·1–45·4 mol%. The levels of DNA–DNA relatedness indicated that strains SW-62 and SW-74 and strains SW-63 and SW-72 were members of two species that were different from . On the basis of phenotypic and phylogenetic data and genomic distinctiveness, strains SW-62 and SW-74 and strains SW-63 and SW-72 were placed in the genus as two distinct novel species, for which the names sp. nov. (type strain, SW-62=KCCM 41645=JCM 11812) and sp. nov. (type strain, SW-63=KCCM 41646=JCM 11811), respectively, are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03051-0
2005-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551015.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03051-0&mimeType=html&fmt=ahah

References

  1. Barbeyron, T., L'Haridon, S., Corre, E., Kloareg, B. & Potin, P. ( 2001; ). Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 985–997.[CrossRef]
    [Google Scholar]
  2. Baumann, L. & Baumann, P. ( 1981; ). The marine Gram-negative eubacteria; genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, pp. 1302–1330. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer.
  3. Bowman, J. P., McCammon, S. A., Brown, J. L., Nichols, P. D. & McMeekin, T. A. ( 1997; ). Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47, 670–677.[CrossRef]
    [Google Scholar]
  4. Bruns, A., Rohde, M. & Berthe-Corti, L. ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef]
    [Google Scholar]
  5. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  7. Glöckner, F. O., Fuchs, B. M. & Amann, R. ( 1999; ). Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65, 3721–3726.
    [Google Scholar]
  8. Kirchman, D. L. ( 2002; ). The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39, 91–100.
    [Google Scholar]
  9. Komagata, K. & Suzuki, K. ( 1987; ). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–203.
    [Google Scholar]
  10. Lanyi, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  11. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  12. Llobet-Brossa, E., Rosselló-Mora, R. & Amann, R. ( 1998; ). Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64, 2691–2696.
    [Google Scholar]
  13. Pinhassi, J., Zweifel, U. L. & Hagström, Å. ( 1997; ). Dominant marine bacterioplankton species found among colony-forming bacteria. Appl Environ Microbiol 63, 3359–3366.
    [Google Scholar]
  14. Sasser, M. ( 1990; ). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Newark, DE: MIDI.
  15. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  16. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  17. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  18. Yoon, J.-H., Kim, H., Kim, S.-B., Kim, H.-J., Kim, W. Y., Lee, S. T., Goodfellow, M. & Park, Y.-H. ( 1996; ). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46, 502–505.[CrossRef]
    [Google Scholar]
  19. Yoon, J.-H., Lee, S. T. & Park, Y.-H. ( 1998; ). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rRNA gene sequences. Int J Syst Bacteriol 48, 187–194.[CrossRef]
    [Google Scholar]
  20. Yoon, J.-H., Kim, H., Kim, I.-G., Kang, K. H. & Park, Y.-H. ( 2003; ). Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53, 1169–1174.[CrossRef]
    [Google Scholar]
  21. Yurkov, V., Stackebrandt, E., Holmes, A. & 7 other authors ( 1994; ). Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44, 427–434.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03051-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03051-0
Loading

Data & Media loading...

vol. , part 3, pp. 1015–1019

Transmission electron micrographs showing the appendages found on most cells of strains SW-62 , SW-74, SW-63 and SW-72 are available to download. [PDF](73KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error