1887

Abstract

Previously, a novel, fast-growing spirochaete was isolated from the hard tick , which infests tortoises (), by using Barbour–Stoenner–Kelly (BSK) II medium; the tick samples were taken from the Istanbul area in northwestern Turkey [ Güner . (2003) . , 2539–2544]. Here is presented a detailed characterization of the spirochaete. Electron microscopy revealed that strain IST7 is morphologically similar to other spirochaetes of the genus and possesses 15 to 16 flagellae that emerge from both polar regions. PFGE analysis revealed the genome to comprise a linear chromosome of approximately 1 Mb; two large linear plasmids of approximately 145 and 140 kb, and several small plasmids ranging from 50 to 20 kb in size were also found. The 16S rRNA gene sequence of this isolate exhibited 99·4 to 99·8 % identity with other strains isolated from and less than 99 % similarity with those of other species. A phylogenetic tree, generated from 16S rRNA gene sequences, demonstrated that the spirochaete isolates from clustered together and branched off from both Lyme-disease-related and relapsing-fever-associated species. A single copy of the gene was detected in the genome of strain IST7 by Southern hybridization. DNA–DNA hybridization results showed that strain IST7 was distinct from Lyme-disease-related , and the relapsing-fever-associated species . The G+C content of strain IST7 is 30·0 mol%. From these genetic features, a novel species, sp. nov., is proposed; the type strain is IST7 (=JCM 11958=DSM 16138).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03050-0
2004-09-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541649.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03050-0&mimeType=html&fmt=ahah

References

  1. Armstrong P. M., Rich S. M., Smith R. D., Hartl D. L., Spielman A., Telford S. R. III 1996; A new Borrelia infecting Lone Star ticks. Lancet 347:67–68
    [Google Scholar]
  2. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–554
    [Google Scholar]
  3. Barbour A. G., Hayes S. F. 1986; Biology of Borrelia species. Microbiol Rev 50:381–400
    [Google Scholar]
  4. Barbour A. G., Hayes S. F., Heiland R. A., Schrumpf M. E., Tessier S. L. 1986; A Borrelia -specific monoclonal antibody binds to a flagellar epitope. Infect Immun 52:549–554
    [Google Scholar]
  5. Barbour A. G., Maupin G. O., Teltow G. J., Carter C. J., Piesman J. 1996; Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum : possible agent of a Lyme disease-like illness. J Infect Dis 173:403–409 [CrossRef]
    [Google Scholar]
  6. Blüthmann H., Brück D., Hübner L., Schöffski A. 1973; Reassociation of nucleic acids in solutions containing formamide. Biochem Biophys Res Commun 50:91–97 [CrossRef]
    [Google Scholar]
  7. Cutler S. J., Moss J., Fukunaga M., Wright D. J. M., Fekade D., Warrell D. 1997; Borrelia recurrentis characterization and comparison with relapsing-fever, Lyme-associated, and other Borrelia spp. Int J Syst Bacteriol 47:958–968 [CrossRef]
    [Google Scholar]
  8. Ezaki T., Takeuchi N., Liu S. L., Kai A., Yamamoto H., Yabuuchi E. 1988; Small-scale DNA preparation for rapid genetic identification of Campylobacter species without radioisotope. Microbiol Immunol 32:141–150 [CrossRef]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Ferdows M. S., Barbour A. G. 1989; Megabase-sized linear DNA in the bacterium Borrelia burgdorferi , the Lyme disease agent. Proc Natl Acad Sci U S A 86:5969–5973 [CrossRef]
    [Google Scholar]
  11. Ferdows M. S., Serwer P., Griess G. A., Norris S. J., Barbour A. G. 1996; Conversion of a linear to a circular plasmid in the relapsing fever agent Borrelia hermsii . J Bacteriol 178:793–800
    [Google Scholar]
  12. Fraenkel C. J., Garpmo U., Berglund J. 2002; Determination of novel Borrelia genospecies in Swedish Ixodes ricinus ticks. J Clin Microbiol 40:3308–3312 [CrossRef]
    [Google Scholar]
  13. Fukunaga M., Takahashi Y., Tsuruta Y., Matsushita O., Ralph D., McClelland M., Nakao M. 1995; Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus , the vector for Lyme disease in Japan. Int J Syst Bacteriol 45:804–810 [CrossRef]
    [Google Scholar]
  14. Güner E. S., Hashimoto N., Kadosaka T., Imai Y., Masuzawa T. 2003; A novel, fast-growing Borrelia sp. isolated from the hard tick Hyalomma aegyptium in Turkey. Microbiology 149:2539–2544 [CrossRef]
    [Google Scholar]
  15. Hyde F. W., Johnson R. C. 1984; Genetic relationship of Lyme disease spirochetes to Borrelia , Treponema , and Leptospira . J Clin Microbiol 20:151–154
    [Google Scholar]
  16. Johnson R. C., Schmid G. P., Hyde F. W., Steigerwalt A. G., Brenner D. J. 1984; Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Bacteriol 34:496–497 [CrossRef]
    [Google Scholar]
  17. Kawabata H., Masuzawa T., Yanagihara Y. 1993; Genomic analysis of Borrelia japonica sp. nov. isolated from Ixodes ovatus in Japan. Microbiol Immunol 37:843–848 [CrossRef]
    [Google Scholar]
  18. Komatsu M., Shimakawa K., Aihara M., Matsuo S., Ezaki T. 1996; Detection and identification method of three mycobacterium species and genus specific detection by polymerase chain reaction and DNA hybridization with alkaline phosphatase labeled oligonucleotide probe. Kansenshogaku Zasshi 70:141–150 (in Japanese [CrossRef]
    [Google Scholar]
  19. Masuzawa T., Komikado T., Iwaki A., Suzuki H., Kaneda K., Yanagihara Y. 1996; Characterization of Borrelia sp. isolated from Ixodes tanuki , I. turdus , and I. columnae in Japan by restriction fragment length polymorphism of rrf (5S)- rrl (23S) intergenic spacer amplicons. FEMS Microbiol Lett 142:77–83 [CrossRef]
    [Google Scholar]
  20. Masuzawa T., Takada N., Kudeken M., Fukui T., Yano Y., Ishiguro F., Kawamura Y., Imai Y., Ezaki T. 2001; Borrelia sinica sp. nov., a Lyme disease-related Borrelia species isolated in China. Int J Syst Evol Microbiol 51:1817–1824 [CrossRef]
    [Google Scholar]
  21. Miyamoto K., Masuzawa T. 2002; Ecology of Borrelia burgdorferi sensu lato in Japan and East Asia. In Lyme Borreliosis, Biology, Epidemiology and Control pp  201–222 Edited by Gray J. S., Kahl O., Lane R. S., Stanek G. Oxford: CABI Publishing;
    [Google Scholar]
  22. Noguchi T., Kumagai M., Kuninaka A. 1988; Analysis of base composition of sequenced DNA's by high performance liquid chromatography of their nuclease p1 hydrolysate. Agric Biol Chem 52:2355–2356 [CrossRef]
    [Google Scholar]
  23. Ras N. M., Lascola B., Postic D., Cutler S. J., Rodhain F., Baranton G., Raoult D. 1996; Phylogenesis of relapsing fever Borrelia spp. Int J Syst Bacteriol 46:859–865 [CrossRef]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Sawada H., Ieki H., Oyaizu H., Matsumoto S. 1993; Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes . Int J Syst Bacteriol 43:694–702 [CrossRef]
    [Google Scholar]
  26. Schmid G. P., Steigerwalt A. G., Johnson S. E., Barbour A. G., Steere A. C., Robinson I. M., Brenner D. J. 1984; DNA characterization of the spirochete that causes Lyme disease. J Clin Microbiol 20:155–158
    [Google Scholar]
  27. Schwartz J. J., Gazumyan A., Schwartz I. 1992; rRNA gene organization in the Lyme disease spirochete, Borrelia burgdorferi . J Bacteriol 174:3757–3765
    [Google Scholar]
  28. Serwer P., Allen J. L. 1984; Conformation of double-stranded DNA during agarose gel electrophoresis: fractionation of linear and circular molecules with molecular weights between 3×106 and 26×106 . Biochemistry 23:922–927 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.03050-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03050-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error