1887

Abstract

Two strains of obligately piezophilic bacteria were isolated from sediment collected from the bottom surface of a small canyon on the seaward slope of the Japan Trench at a depth of 6278 m. The isolated strains, Y223G and Y251E, are closely affiliated with members of the genus on the basis of 16S rRNA gene sequence analysis. The G+C contents of both strains were about 39 mol%. DNA–DNA hybridization values between these strains and reference strains were significantly lower than those accepted as the phylogenetic definition of a species. The novel strains are Gram-negative, polarly flagellated and facultatively anaerobic. The optimal pressure for growth was 60 MPa at both 4 and 10 °C; the most rapid growth rate was observed at 10 °C and 60 MPa. No growth occurred at 15 °C under any pressure studied. The major isoprenoid quinone is Q-8. The predominant cellular fatty acids are C16 : 0 and C16 : 1. Based on the taxonomic differences observed, the isolated strains appear to represent a novel obligately piezophilic species. The name sp. nov. (type strain Y223G=JCM 11831=ATCC BAA-637) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03049-0
2004-09-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541627.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03049-0&mimeType=html&fmt=ahah

References

  1. Allen, E. E., Facciotti, D. & Bartlett, D. H. ( 1999; ). Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65, 1710–1720.
    [Google Scholar]
  2. Barrow, G. I. & Feltham, R. K. A. ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. New York: Cambridge University Press.
  3. Bartlett, D. H. ( 1999; ). Microbial adaptations to the psychrosphere/piezosphere. J Mol Microbiol Biotechnol 1, 93–100.
    [Google Scholar]
  4. Bowman, J. P., Gosink, J. J., McCammon, S. A., Lewis, T. E., Nichols, D. S., Nichols, P. D., Skerratt, J. H., Staley, J. T. & McMeekin, T. A. ( 1998; ). Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22 : 6ω3). Int J Syst Bacteriol 48, 1171–1180.[CrossRef]
    [Google Scholar]
  5. DeLong, E. F., Franks, D. G. & Yayanos, A. A. ( 1997; ). Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63, 2105–2108.
    [Google Scholar]
  6. Deming, J. W. & Baross, J. A. ( 1993; ). Deep-sea smokers: windows to a subsurface biosphere? Geochim Cosmochim Acta 57, 3219–3230.[CrossRef]
    [Google Scholar]
  7. Deming, J. W., Somers, L. K., Straube, W. L., Swartz, D. G. & MacDonell, M. T. ( 1988; ). Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10, 152–160.[CrossRef]
    [Google Scholar]
  8. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  9. Hugh, R. & Leifson, E. ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66, 24–26.
    [Google Scholar]
  10. Ikemoto, E. & Kyo, M. ( 1993; ). Development of microbiological compact mud sampler. Jpn Mar Sci Technol Res 30, 1–16.
    [Google Scholar]
  11. Kato, C. & Nogi, Y. ( 2001; ). Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35, 223–230.[CrossRef]
    [Google Scholar]
  12. Kato, C., Li, L., Nogi, Y., Nakamura, Y., Tamaoka, J. & Horikoshi, K. ( 1998; ). Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64, 1510–1513.
    [Google Scholar]
  13. Kato, C., Sato, T., Smorawinska, M. & Horikoshi, K. ( 1994; ). High pressure conditions stimulate expression of chloramphenicol acetyltransferase regulated by the lac promoter in Escherichia coli. FEMS Microbiol Lett 122, 91–96.[CrossRef]
    [Google Scholar]
  14. Kato, C., Sato, T. & Horikoshi, K. ( 1995; ). Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4, 1–9.[CrossRef]
    [Google Scholar]
  15. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  16. MacDonell, M. T. & Colwell, R. R. ( 1985; ). Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6, 171–182.[CrossRef]
    [Google Scholar]
  17. Nogi, Y. & Kato, C. ( 1999; ). Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 3, 71–77.[CrossRef]
    [Google Scholar]
  18. Nogi, Y., Kato, C. & Horikoshi, K. ( 1998a; ). Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44, 289–295.[CrossRef]
    [Google Scholar]
  19. Nogi, Y., Kato, C. & Horikoshi, K. ( 1998b; ). Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170, 331–338.[CrossRef]
    [Google Scholar]
  20. Nogi, Y., Masui, N. & Kato, C. ( 1998c; ). Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2, 1–7.[CrossRef]
    [Google Scholar]
  21. Nogi, Y., Kato, C. & Horikoshi, K. ( 2002; ). Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52, 1527–1532.[CrossRef]
    [Google Scholar]
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal_w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  24. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  25. Yanagibayashi, M., Nogi, Y., Li, L. & Kato, C. ( 1999; ). Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiol Lett 170, 271–279.[CrossRef]
    [Google Scholar]
  26. Yayanos, A. A. ( 2001; ). Barophiles and piezophiles. In Nature Encyclopedia of Life Sciences. London: Nature Publishing. doi:10.1038/npg.els.0000341
  27. Yayanos, A. A., Dietz, A. S. & Van Boxtel, R. ( 1979; ). Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205, 808–810.[CrossRef]
    [Google Scholar]
  28. Yayanos, A. A., Dietz, A. S. & Van Boxtel, R. ( 1981; ). Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci U S A 78, 5212–5215.[CrossRef]
    [Google Scholar]
  29. Yumoto, I., Kawasaki, K., Iwata, H., Matsuyama, H. & Okuyama, H. ( 1998; ). Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int J Syst Bacteriol 48, 1357–1362.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03049-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03049-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1627 - 1631

Phylogenetic tree showing the relationships of the isolated strains Y223G and Y251E and piezophilic bacteria (bold) within the gamma-subclass of the , constructed by the neighbour-joining method and based on 16S rRNA gene sequences. The scale bar represents 0.02 nucleotide substitutions per site. Bootstrap values are calculated from multiple resamplings of the sequence dataset, which are the basis for multiple tree topologies. [PDF](18 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error