1887

Abstract

Strain Sd/3 (=MTCC 4374=DSM 15820), an arsenic-resistant bacterium, was isolated from a sand sample obtained from an arsenic-contaminated aquifer in Chakdah district in West Bengal, India (23° 3′ N 88° 35′ E). The bacterium was Gram-positive, rod-shaped, non-motile, endospore-forming and yellowish-orange pigmented. It possessed all the characteristics that conform to the genus , such as it had A murein type (-orn--Asp) peptidoglycan variant, MK-7 as the major menaquinone and iso-C15 : 0 and anteiso-C15 : 0 as the major fatty acids. Based on its chemotaxonomic and phylogenetic characteristics, strain Sd/3 was identified as a species of the genus . It exhibited maximum similarity (95 %) at the 16S rRNA gene level with ; however, DNA–DNA similarity with was 60·7 %. Strain Sd/3 also exhibited a number of phenotypic differences from (DSM 6307). These data suggest that Sd/3 represents a novel species of the genus . The name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03047-0
2004-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541369.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03047-0&mimeType=html&fmt=ahah

References

  1. Agnew D. M., Koval S. F., Jarrell K. F. 1995; Isolation and characterization of novel alkaliphiles from Bauxite processing waste and description of Bacillus veddori sp. nov. a new obligate alkaliphile. Syst Appl Microbiol 18:221–230 [CrossRef]
    [Google Scholar]
  2. Blum J. S., Bindi A. B., Buzzelli J., Stolz J. F., Oremland R. S. 1998; Bacillus arsenicoselenatis sp. nov and Bacillus selenitireducens sp. nov., two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  4. Das D., Samanta G., Mandal B. K., Chowdhury T. R., Chanda C. R., Chowdhury P. P., Basu G. K., Chakraborti K. 1996; Arsenic in ground water in six districts of West Bengal, India. Environ Geochem Health 18:5–15 [CrossRef]
    [Google Scholar]
  5. de Vicente A., Aviles M., Codina J. C., Borrego J. J., Romero P. 1990; Resistance to antibiotics and heavy metals of Pseudomonas aeruginosa isolated from natural waters. J Appl Bacteriol 68:625–632 [CrossRef]
    [Google Scholar]
  6. Dopson M., Lindstrom E. B., Hallberg K. B. 2001; Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus . Extremophiles 5:247–255 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1993 phylip (phylogeny inference package) version 3.5c Seattle, USA: Department of Genetics, University of Washington;
    [Google Scholar]
  8. Fritze D., Flossdorf J., Claus D. 1990; Taxonomy of alkaliphilic Bacillus strains. Int J Syst Bacteriol 40:92–97 [CrossRef]
    [Google Scholar]
  9. Heyrman J., Vanparys B., Logan N. A., Balcaen A., Rodríguez-Díaz M., Felske A., De Vos P. 2004; Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov. from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57 [CrossRef]
    [Google Scholar]
  10. Kämpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98 [CrossRef]
    [Google Scholar]
  11. Karim M. M. 2000; Arsenic in ground water and health problems in Bangladesh. Water Res 34:304–310 [CrossRef]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Komagata K., Suzuki K. I. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206
    [Google Scholar]
  14. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  15. Larkin J. M., Stokes J. L. 1967; Taxonomy of psychrophilic strains of Bacillus . J Bacteriol 94:889–895
    [Google Scholar]
  16. Li Z., Kawamura Y., Shida O., Yamagata S., Deguchi T., Ezaki T. 2002; Bacillus okuhidensis sp. nov. isolated from the Okuhida spa area of Japan. Int J Syst Evol Microbiol 52:1205–1209 [CrossRef]
    [Google Scholar]
  17. Logan N. A., Lebbe L., Verhelst A., Goris J., Forsyth G., Rodriguez-Diaz M., Heyndrickx M., de Vos P. 2002; Bacillus luciferensis sp. nov. from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 52:1985–1989 [CrossRef]
    [Google Scholar]
  18. Nagel M., Andreesen J. R. 1991; Bacillus niacini sp. nov. a nicotinate-metabolizing mesophile isolated from soil. Int J Syst Bacteriol 41:134–139 [CrossRef]
    [Google Scholar]
  19. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  20. Niggemyer A., Spring S., Stackebrandt E., Rosenzweig R. F. 2001; Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium . Appl Environ Microbiol 67:5568–5580 [CrossRef]
    [Google Scholar]
  21. Prithivirajsingh S., Mishra S. K., Mahadevan A. 2001; Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3. Biochem Biophys Res Commun 280:1393–1401 [CrossRef]
    [Google Scholar]
  22. Reddy G. S. N., Aggarwal R. K., Matsumoto G. I., Shivaji S. 2000; Arthrobacter flavus sp. nov., a psychrophilic bacterium isolate from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561 [CrossRef]
    [Google Scholar]
  23. Reddy G. S. N., Prakash J. S. S., Matsumoto G. I., Stackebrandt E., Shivaji S. 2002; Arthrobacter roseus sp. nov. a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021 [CrossRef]
    [Google Scholar]
  24. Sato T., Kobayashi Y. 1998; The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180:1655–1661
    [Google Scholar]
  25. Sato N. S., Murata N. 1988; Membrane lipids. Methods Enzymol 167:251–259
    [Google Scholar]
  26. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  27. Shivaji S., Rao N. S., Saisree L., Reddy G. S. N., Seshu Kumar G., Bhargava P. M. 1989; Isolates of Arthrobacter from the soils of Schirmacher Oasis, Antarctica. Polar Biol 10:225–229
    [Google Scholar]
  28. Shivaji S., Ray M. K., Shyamala Rao N., Saisree L., Jagannadham M. V., Seshu Kumar G., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov. a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–116 [CrossRef]
    [Google Scholar]
  29. Shivaji S., Vijaya Bhanu N., Aggarwal R. K. 2000; Identification of Yersinia pestis as the causative organism of plague in India as determined by 16S rDNA sequencing and RAPD-based genomic fingerprinting. FEMS Microbiol Lett 189:247–252 [CrossRef]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994 Phenotypic characterization: In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Spanka R., Fritze D. 1993; Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval spore forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Bacteriol 43:150–156 [CrossRef]
    [Google Scholar]
  32. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  33. Suresh K., Reddy G. S. N., Sengupta S., Shivaji S. 2004; Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461 [CrossRef]
    [Google Scholar]
  34. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  36. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA–DNA hybridisation. Methods Microbiol 19:333–355
    [Google Scholar]
  37. Venkateswaran K., Kempf M., Chen F., Satomi M., Nicholson W., Kern R. 2003; Bacillus nealsonii sp. nov. isolated from a space-craft assembly facility, whose spores are γ -radiation resistant. Int J Syst Evol Microbiol 53:165–172 [CrossRef]
    [Google Scholar]
  38. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Inoue N., Kawasaki K. 2000; Identification of facultatively alkaliphilic Bacillus sp. strain YN-2000 and its fatty acid composition and cell-surface aspects depending on culture pH. Extremophiles 4:285–290 [CrossRef]
    [Google Scholar]
  39. Yumoto I., Yamaga S., Sogabe Y., Nodasaka Y., Matsuyama H., Nakajima K., Suemori A. 2003; Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m -hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03047-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03047-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error