1887

Abstract

Sequences of the gene encoding the -subunit of the RNA polymerase () were used to delineate the phylogeny of the family . A total of 72 strains, including the type strains of the major described species as well as selected field isolates, were included in the study. Selection of universal -derived primers for the family allowed straightforward amplification and sequencing of a 560 bp fragment of the gene. In parallel, 16S rDNA was sequenced from all strains. The phylogenetic tree obtained with the sequences reflected the major branches of the tree obtained with the 16S rDNA, especially at the genus level. Only a few discrepancies between the trees were observed. In certain cases the phylogeny was in better agreement with DNA–DNA hybridization studies than the phylogeny derived from 16S rDNA. The gene is strongly conserved within the various species of the family of . Hence, gene sequence analysis in conjunction with 16S rDNA sequencing is a valuable tool for phylogenetic studies of the and may also prove useful for reorganizing the current taxonomy of this bacterial family.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03043-0
2004-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541393.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03043-0&mimeType=html&fmt=ahah

References

  1. Angen, Ø., Mutters, R., Caugant, D. A., Olsen, J. E. & Bisgaard, M. ( 1999; ). Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA–DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. Int J Syst Bacteriol 49, 67–86.[CrossRef]
    [Google Scholar]
  2. Angen, Ø., Ahrens, P., Kuhnert, P., Christensen, H. & Mutters, R. ( 2003; ). Proposal of Histophilus somni gen. nov., sp. nov. for the three species incertae sedisHaemophilus somnus’, ‘Haemophilus agni’ and ‘Histophilus ovis’. Int J Syst Evol Microbiol 53, 1449–1456.[CrossRef]
    [Google Scholar]
  3. Berthoud, H., Frey, J. & Kuhnert, P. ( 2002; ). Characterization of Aqx and its operon: the hemolytic RTX determinant of Actinobacillus equuli. Vet Microbiol 87, 159–174.[CrossRef]
    [Google Scholar]
  4. Bisgaard, M. ( 1993; ). Ecology and significance of Pasteurellaceae in animals. Zentralbl Bakteriol 279, 7–26.[CrossRef]
    [Google Scholar]
  5. Busse, H. J., Bunka, S., Hensel, A. & Lubitz, W. ( 1997; ). Discrimination of members of the family of Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47, 698–708.[CrossRef]
    [Google Scholar]
  6. Christensen, H., Bisgaard, M., Bojesen, A. M., Mutters, R. & Olsen, J. E. ( 2003a; ). Genetic relationships among avian isolates classified as Pasteurella haemolytica, ‘Actinobacillus salpingitidis’ or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov., comb. nov. and description of additional genomospecies within Gallibacterium gen. nov. Int J Syst Evol Microbiol 53, 275–287.[CrossRef]
    [Google Scholar]
  7. Christensen, H., Foster, G., Christensen, J. P., Pennycott, T., Olsen, J. E. & Bisgaard, M. ( 2003b; ). Phylogenetic analysis by 16S rDNA gene sequence comparison of avian taxa of Bisgaard and characterization and description of two new taxa of Pasteurellaceae. J Appl Microbiol 95, 354–363.[CrossRef]
    [Google Scholar]
  8. Christensen, H., Kuhnert, P., Olsen, J. E. & Bisgaard, M. ( 2004; ). Comparative phylogeny between the housekeeping genes atpD, infB, rpoB and 16S rDNA within Pasteurellaceae. Int J Syst Evol Microbiol (in press).
    [Google Scholar]
  9. Dahllof, I., Baillie, H. & Kjelleberg, S. ( 2000; ). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66, 3376–3380.[CrossRef]
    [Google Scholar]
  10. De Ley, J., Mannheim, W., Mutters, R. & 7 other authors ( 1990; ). Inter- and intrafamilial similarities of rRNA cistrons of the Pasteurellaceae. Int J Syst Bacteriol 40, 126–137.[CrossRef]
    [Google Scholar]
  11. Dewhirst, F. E., Paster, B. J., Olsen, I. & Fraser, G. J. ( 1992; ). Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences. J Bacteriol 174, 2002–2013.
    [Google Scholar]
  12. Dewhirst, F. E., Paster, B. J., Olsen, I. & Fraser, G. J. ( 1993; ). Phylogeny of the Pasteurellaceae as determined by comparison of 16S ribosomal ribonucleic acid sequences. Zentralbl Bakteriol 279, 35–44.[CrossRef]
    [Google Scholar]
  13. Drancourt, M. & Raoult, D. ( 2002; ). rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40, 1333–1338.[CrossRef]
    [Google Scholar]
  14. Foster, G., Ross, H. M., Malnick, H., Willems, A., Hutson, R. A., Reid, R. J. & Collins, M. D. ( 2000; ). Phocoenobacter uteri gen. nov., sp. nov., a new member of the family Pasteurellaceae Pohl (1979) 1981 isolated from a harbour porpoise (Phocoena phocoena). Int J Syst Evol Microbiol 50, 135–139.[CrossRef]
    [Google Scholar]
  15. Frey, J. & Kuhnert, P. ( 2002; ). RTX toxins in Pasteurellaceae. Int J Med Microbiol 292, 149–158.[CrossRef]
    [Google Scholar]
  16. Gottschalk, M., Broes, A., Mittal, K. R., Kobisch, M., Kuhnert, P., Lebrun, A. & Frey, J. ( 2003; ). Non-pathogenic Actinobacillus isolates antigenically and biochemically similar to Actinobacillus pleuropneumoniae: a novel species? Vet Microbiol 92, 87–101.[CrossRef]
    [Google Scholar]
  17. Hedegaard, J., Okkels, H., Bruun, B., Kilian, M., Mortensen, K. K. & Norskov-Lauritsen, N. ( 2001; ). Phylogeny of the genus Haemophilus as determined by comparison of partial infB sequences. Microbiology 147, 2599–2609.
    [Google Scholar]
  18. Ko, K. S., Kim, J. M., Kim, J. W., Jung, B. Y., Kim, W., Kim, I. J. & Kook, Y. H. ( 2003; ). Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. J Clin Microbiol 41, 2908–2914.[CrossRef]
    [Google Scholar]
  19. Kuhnert, P., Capaul, S. E., Nicolet, J. & Frey, J. ( 1996; ). Phylogenetic positions of Clostridium chauvoei and Clostridium septicum based on 16S rRNA gene sequences. Int J Syst Bacteriol 46, 1174–1176.[CrossRef]
    [Google Scholar]
  20. Kuhnert, P., Heyberger-Meyer, B., Nicolet, J. & Frey, J. ( 2000; ). Characterization of PaxA and its operon: a cohemolytic RTX toxin determinant from pathogenic Pasteurella aerogenes. Infect Immun 68, 6–12.[CrossRef]
    [Google Scholar]
  21. Kuhnert, P., Frey, J., Lang, N. P. & Mayfield, L. ( 2002; ). A phylogenetic analysis of Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis clinical strains reveals a clear species clustering. Int J Syst Evol Microbiol 52, 1391–1395.[CrossRef]
    [Google Scholar]
  22. Kuhnert, P., Berthoud, H., Christensen, H., Bisgaard, M. & Frey, J. ( 2003a; ). Phylogenetic relationship of equine Actinobacillus species and distribution of RTX toxin genes among clusters. Vet Res 34, 353–359.[CrossRef]
    [Google Scholar]
  23. Kuhnert, P., Berthoud, H., Straub, R. & Frey, J. ( 2003b; ). Host specific activity of RTX toxins from haemolytic Actinobacillus equuli and Actinobacillus suis. Vet Microbiol 92, 161–167.[CrossRef]
    [Google Scholar]
  24. Lally, E. T., Golub, E. E. & Kieba, I. R. ( 1994; ). Identification and immunological characterization of the domain of Actinobacillus actinomycetemcomitans leukotoxin that determines its specificity for human target cells. J Biol Chem 269, 31289–31295.
    [Google Scholar]
  25. Møller, K., Fussing, V., Grimont, P. A. D., Paster, B. J., Dewhirst, F. E. & Kilian, M. ( 1996; ). Actinobacillus minor sp. nov., Actinobacillus porcinus sp. nov., and Actinobacillus indolicus sp. nov., three new V factor-dependent species from the respiratory tract of pigs. Int J Syst Bacteriol 46, 951–956.[CrossRef]
    [Google Scholar]
  26. Mollet, C., Drancourt, M. & Raoult, D. ( 1997; ). rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26, 1005–1011.[CrossRef]
    [Google Scholar]
  27. Mollet, C., Drancourt, M. & Raoult, D. ( 1998; ). Determination of Coxiella burnetii rpoB sequence and its use for phylogenetic analysis. Gene 19, 97–103.
    [Google Scholar]
  28. Morozumi, T. & Nicolet, J. ( 1986; ). Morphological variations of Haemophilus parasuis strains. J Clin Microbiol 23, 138–142.
    [Google Scholar]
  29. Mutters, R., Piechulla, K. & Mannheim, W. ( 1984; ). Phenotypic differentiation of Pasteurella sensu stricto and the Actinobacillus group. Eur J Clin Microbiol 3, 225–229.[CrossRef]
    [Google Scholar]
  30. Mutters, R., Ihm, P., Pohl, S., Frederiksen, W. & Mannheim, W. ( 1985; ). Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pastuerella langaa. Int J Syst Bacteriol 35, 309–322.[CrossRef]
    [Google Scholar]
  31. Mutters, R., Mannheim, W. & Bisgaard, M. ( 1989; ). Taxonomy of the group. In Pasteurella and Pasteurellosis, pp. 3–34. Edited by C. Adlam & J. M. Rutter. London: Academic Press.
  32. Olsen, I., Dewhirst, F. E., Paster, B. J. & Busse, H. J. ( 2004; ). Family Pasteurellaceae. In Bergey's Manual of Systematic Bacteriology, 2nd edn. Edited by G. R. Garrity. New York: Springer (in press).
  33. Osawa, R., Rainey, F. A., Fujisawa, T., Lang, E., Busse, H. J., Walsh, T. & Stackebrandt, E. ( 1995; ). Lonepinella koalarum gen. nov., sp. nov., a new tannin-protein complex degrading bacterium. Syst Appl Microbiol 18, 368–373.[CrossRef]
    [Google Scholar]
  34. Pohl, S. ( 1981; ). DNA relatedness among members of Haemophilus, Pasteurella and Actinobacillus. In Haemophilus, Pasteurella and Actinobacillus, p. 253. Edited by M. Kilian, W. Frederiksen & E. L. Biberstein. London: Academic Press.
  35. Taillardat-Bisch, A. V., Raoult, D. & Drancourt, M. ( 2003; ). RNA polymerase β-subunit-based phylogeny of Ehrlichia spp., Anaplasma spp., Neorickettsia spp. and Wolbachia pipientis. Int J Syst Evol Microbiol 53, 455–458.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03043-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03043-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1393 - 1399

Percentage nucleotide difference of partial gene sequences within the family [PDF](110 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error