1887

Abstract

A novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium, designated strain IBSK3, was isolated from a coastal hot spring in Ibusuki, Kagoshima Prefecture, Japan. The cells were motile, straight to slightly curved rods (1·2–3·0 μm long and 0·3–0·4 μm wide). Strain IBSK3 was an obligate chemolithoautotroph growing by respiratory nitrate reduction with H, forming NO as an end product. Low concentrations of O (0·4–7·7 %, v/v; optimum 2·0 %, v/v) could serve as an alternative electron acceptor to growth. In addition, strain IBSK3 was able to utilize elemental sulfur as a sole electron donor with either nitrate or low concentrations of O as an electron acceptor. Growth was observed between 55 and 77·5 °C (optimum 75 °C; 2 h doubling time), pH 5·5 and 8·3 (optimum pH 6·5–7·0), and in the presence of 0·5 and 4·0 % NaCl (optimum 2·0 %). The G+C content of the genomic DNA was 49·2 mol%. On the basis of 16S rRNA gene sequence analysis, strain IBSK3 belonged to the family , but it only demonstrated a distant phylogenetic relationship with any recognized species within the family (sequence similarity was less than 92 %). On the basis of the physiological and molecular characteristics of the novel isolate, a new genus and novel species are proposed: the type strain of gen. nov., sp. nov. is IBSK3 (=JCM 12173=ATCC BAA-821).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03031-0
2004-11-01
2020-05-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542079.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03031-0&mimeType=html&fmt=ahah

References

  1. Allen S. E., Grimshaw H. M., Parkinson J. A., Quarmby C. 1974; Inorganic constituents: nitrogen. In Chemical Analysis of Ecological Materials pp  184–206 Edited by Allen S. E. London: Blackwell Scientific Publications;
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Baross J. A. 1995; Isolation, growth and maintenance of hyperthermophiles. In Archaea: a Laboratory Manual, Thermophiles pp  15–23 Edited by Robb F. T., R A. Place. Cold Springer; Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  4. Deckert G., Warren P. V., Gaasterland T. 13 other authors 1998; The complete genome of the hyperthermophilic bacterium Aquifex aeolicus . Nature 392:353–358 [CrossRef]
    [Google Scholar]
  5. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  6. Eder W., Huber R. 2002; New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318 [CrossRef]
    [Google Scholar]
  7. Gillis M., Vandamme P., De Vos P., Swings J., Kersters K. 2001; Polyphasic taxonomy. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  43–48 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  8. Huber R., Wilharm T., Huber D. 7 other authors 1992; Aquifex pyrophilus gen. nov., sp. nov. represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351 [CrossRef]
    [Google Scholar]
  9. Huber R., Eder W., Heldwein S., Wanner G., Huber H., Rachel R., Stetter K. O. 1998; Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 643576–3583
    [Google Scholar]
  10. Jahnke L. L., Eder W., Huber R., Hope J. M., Hinrichs K.-U., Hayes J. M., Des Marais D. J., Cady S. L., Summons R. E. 2001; Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189 [CrossRef]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1984; Hydrogenobacter thermophilus gen. nov., sp. nov. an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34:5–10 [CrossRef]
    [Google Scholar]
  13. Kristjansson J. K., Ingason A., Alfredsson G. A. 1985; Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus , from Icelandic hot springs. Arch Microbiol 140:321–325 [CrossRef]
    [Google Scholar]
  14. Kryukov V. R., Savel'eva N. D., Pusheva M. A. 1984; Calderobacterium hydrogenophilum nov. gen., nov. sp., an extreme thermophilic hydrogen bacterium, and its hydrogenase activity. Mikrobiologiya 52:781–788
    [Google Scholar]
  15. Lauerer G., Kristjansson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105 [CrossRef]
    [Google Scholar]
  16. L'Haridon S., Cilia V., Messner P., Raguénès G., Gambacorta A., Sleytr U. B., Prieur D, Jeanthon C. 1998; Desulfurobacterium thermolithotrophum gen. nov., sp. nov. a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711 [CrossRef]
    [Google Scholar]
  17. Matsunaga K., Nishimura M. 1969; Determination of nitrate in sea water. Anal Chim Acta 43:350–353
    [Google Scholar]
  18. Nakagawa S., Takai K., Horikoshi K., Sako Y. 2003a; Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869 [CrossRef]
    [Google Scholar]
  19. Nakagawa S., Takai K., Horikoshi K., Sako Y. 2003b; Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 54:329–335
    [Google Scholar]
  20. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  21. Reysenbach A.-L. 2001; Family I. Aquificaceae fam. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1p– 360 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Sako Y., Nomura N., Uchida A., Ishida Y., Morii H., Koga Y., Hoaki T., Maruyama A. 1996; Aeropyrum pernix gen. nov., sp. nov. a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C. Int J Syst Bacteriol 46:1070–1077 [CrossRef]
    [Google Scholar]
  24. Sako Y., Nakagawa S., Takai K., Horikoshi K. 2003; Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65 [CrossRef]
    [Google Scholar]
  25. Shima S., Suzuki K. I. 1993; Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int J Syst Bacteriol 43:703–708 [CrossRef]
    [Google Scholar]
  26. Skirnisdottir S., Hreggvidsson G. O., Holst O., Kristjansson J. K. 2001; A new ecological adaptation to high sulfide by a Hydrogenobacter sp. growing on sulfur compounds but not on hydrogen. Res Microbiol 156:41–47 [CrossRef]
    [Google Scholar]
  27. Soga T., Ross G. A. 1999; Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis. J Chromatogr A 837:231–239 [CrossRef]
    [Google Scholar]
  28. Stetter K. O. 1988; Archaeoglobus fulgidus gen. nov., sp. nov. a new taxon of extremely thermophilic Archaebacteria . Syst Appl Microbiol 10:172–173 [CrossRef]
    [Google Scholar]
  29. Suzuki M., Cui Z. J., Ishii M., Igarashi Y. 2001; Nitrate respiratory metabolism in an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. Arch Microbiol 175:75–78 [CrossRef]
    [Google Scholar]
  30. Swofford D. L. 2000 paup*. Phylogenetic analysis using parsimony (and other methods) , version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  31. Takai K., Komatsu T., Horikoshi K. 2001; Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51:1425–1435
    [Google Scholar]
  32. Takai K., Hirayama H., Sakihama Y., Inagaki F., Yamamoto Y., Horikoshi K. 2002; Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054 [CrossRef]
    [Google Scholar]
  33. Takai K., Nakagawa S., Sako Y., Horikoshi K. 2003; Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954 [CrossRef]
    [Google Scholar]
  34. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  35. Van Dover C. L., Humphris S. E., Fornari D. 24 other authors 2001; Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–823 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03031-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03031-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error