1887

Abstract

Heterotrophic bacteria isolated from water samples taken from Hiroshima Bay, Japan, and referred to as (Dinophyceae) cyst formation-promoting bacteria, were assigned to the group within the - on the basis of nearly complete 16S rRNA gene sequences. Phylogenetic analyses showed that two strains, CFPB-A9 and CFPB-A5, are closely related to each other and that their closest relative was (95·9 % sequence similarity). These strains were Gram-negative, motile, obligately aerobic rods that required sodium ions and 2–7 % sea salts for growth and did not produce bacteriochlorophyll . Their optimal growth temperature was 25–30 °C. The strains had Q-10 as the dominant respiratory quinone. Primary cellular fatty acid in both strains was 18 : 17. The DNA G+C contents of strains CFPB-A9 and CFPB-A5 were 59·1 and 59·2 mol%, respectively. Based on physiological, biological, chemotaxonomic and phylogenetic data, the strains are considered to represent a novel species, sp. nov., with type strain CFPB-A9 (=LMG 22015=NBRC 100362).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03029-0
2004-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541687.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03029-0&mimeType=html&fmt=ahah

References

  1. Adachi M., Sako Y., Ishida Y. 1996; Analysis of Alexandrium (Dinophyceae) species using sequences of the 5·8S ribosomal DNA and internal transcribed spacer regions. J Phycol 32:424–432 [CrossRef]
    [Google Scholar]
  2. Adachi M., Kanno T., Matsubara T., Nishijima T., Itakura S., Yamaguchi M. 1999; Promotion of cyst formation in the toxic dinoflagellate Alexandrium (Dinophyceae) by natural bacterial assemblages from Hiroshima Bay, Japan. Mar Ecol Prog Ser 191:175–185 [CrossRef]
    [Google Scholar]
  3. Adachi M., Matsubara T., Okamoto R., Nishijima T., Itakura S., Yamaguchi M. 2001; Inhibition of cyst formation in the toxic dinoflagellate Alexandrium (Dinophyceae) by bacteria from Hiroshima Bay, Japan. Aquat Microb Ecol 26:223–233
    [Google Scholar]
  4. Adachi M., Kanno T., Okamoto R., Itakura S., Yamaguchi M., Nishijima T. 2003; Population structure of Alexandrium (Dinophyceae) cyst formation-promoting bacteria in Hiroshima Bay, Japan. Appl Environ Microbiol 69:6560–6568 [CrossRef]
    [Google Scholar]
  5. Buchan A., Collier L. S., Neidle E. L., Moran M. A. 2000; Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66:4662–4672 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Dejsirilert S., Yamamoto H., Takeuchi N., Liu S., Yabuuchi E. 1988; Simple and rapid genetic identification of Legionella species with photobiotin-labeled DNA. J Gen Appl Microbiol 34:191–199 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1995 phylip (phylogeny inference package), version 3.57c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. González J. M., Moran M. A. 1997; Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242
    [Google Scholar]
  10. González J. M., Kiene R. P., Moran M. A. 1999; Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria . Appl Environ Microbiol 65:3810–3819
    [Google Scholar]
  11. González J. M., Simó R., Massana R., Covert J. S., Casamayor E. O., Pedrós-Alio C., Moran M. A. 2000; Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246 [CrossRef]
    [Google Scholar]
  12. Gosink J. J., Herwig R. P., Staley J. T. 1997; Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus sp. nov. nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365 [CrossRef]
    [Google Scholar]
  13. Hiraishi A., Muramatsu K., Ueda Y. 1996; Molecular genetic analyses of Rhodobacter azotoformans sp. nov. and related species of phototrophic bacteria. Syst Appl Microbiol 19:168–177 [CrossRef]
    [Google Scholar]
  14. Holmes A. J., Kelly D. P., Baker S. C., Thompson A. S., De Marco P., Kenna E. M., Murrell J. C. 1997; Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch Microbiol 167:46–53 [CrossRef]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [CrossRef]
    [Google Scholar]
  17. Kiene R. P., Linn L. J., González J., Moran M. A., Bruton J. A. 1999; Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65:4549–4558
    [Google Scholar]
  18. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  19. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  20. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  21. Ledyard K. M., DeLong E. F., Dacey J. W. H. 1993; Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch Microbiol 160:312–318 [CrossRef]
    [Google Scholar]
  22. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  23. Petursdottir S. K., Kristjansson J. K. 1997; Silicibacter lacuscaerulensis gen. nov. sp. nov. a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1:94–99 [CrossRef]
    [Google Scholar]
  24. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  25. Pukall R., Buntefuß D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J, Lebaron P, Bernard L, Stackebrandt E. 1999; Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α - Proteobacteria . Int J Syst Bacteriol 49:513–519 [CrossRef]
    [Google Scholar]
  26. Rheims H., Frühling A., Schumann P., Rohde M., Stackebrandt E. 1999; Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. Int J Syst Bacteriol 49:795–802 [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylognetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Schaefer J. K., Goodwin K. D., McDonald I. R., Murrell J. C., Oremland R. S. 2002; Leisingera methylohalidivorans gen. nov., sp. nov. a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 52:851–859 [CrossRef]
    [Google Scholar]
  29. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a . Syst Appl Microbiol 14:140–145 [CrossRef]
    [Google Scholar]
  30. Sorokin D. Y. 1995; Sulfitobacter pontiacus gen. nov., sp. nov. – a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology 64:295–305
    [Google Scholar]
  31. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 1999; Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49:629–634 [CrossRef]
    [Google Scholar]
  32. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1998; Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen.nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov.,Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44:201–210 [CrossRef]
    [Google Scholar]
  33. Urbance J. W., Bratina B. J., Stoddard S. F., Schmidt T. M. 2001; Taxonomic characterization of Ketogulonigenium vulgare gen.nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070 [CrossRef]
    [Google Scholar]
  34. Wagner-Döbler I., Rheims H., Felske A., Pukall R., Tindall B. J. 2003; Jannaschia helgolandensis , gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 53:731–738 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03029-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03029-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error