1887

Abstract

A psychrotolerant Gram-reaction-negative, rod-shaped and orange-pigmented bacterium, designated strain M9-62, which was motile by means of peritrichous flagella, was isolated from tundra soil sampled near Ny-Ålesund, Svalbard Islands, Norway (78° N). Growth occurred at 4–30 °C (optimum, 25 °C) and pH 5.0–8.0 (optimum, pH 6.0–7.0). Analysis of the 16S rRNA gene sequence of strain M9-62 placed it in the genus ; sequence similarities of the isolate with type strains of members of related genera ranged from 92.0 to 96.3 %. Strain M9-62 contained anteiso-C (51.1 %), iso-C (7.5 %) and C (6.1 %) as the major cellular fatty acids and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol as the main polar lipids. The major respiratory quinone was MK-7 and the DNA G+C content was 50.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain M9-62 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is M9-62 ( = CCTCC AB 2010228 = NRRL B-59459).

Funding
This study was supported by the:
  • R & D Infrastructure and Facility Development Program from the Ministry of Science and Technology of the People’s Republic of China (Award 2005DKA21208)
  • State Oceanic Administration, PR China (Award 10/11YR06)
  • National Basic Research Program of China (973 Program) (Award 2011CB808800)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030247-0
2012-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/817.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030247-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  2. Cai F., Wang Y., Qi H., Dai J., Yu B., An H., Rahman E., Fang C. 2010; Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 60:1605–1608 [View Article][PubMed]
    [Google Scholar]
  3. Cho E. A., Lee J. S., Lee K. C., Jung H. C., Pan J. G., Pyun Y. R. 2007; Cohnella laeviribosi sp. nov., isolated from a volcanic pond. Int J Syst Evol Microbiol 57:2902–2907 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  8. García-Fraile P., Velázquez E., Mateos P. F., Martínez-Molina E., Rivas R. 2008; Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella . Int J Syst Evol Microbiol 58:1855–1859 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:781–786 [View Article][PubMed]
    [Google Scholar]
  10. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J.-S. 2010a; Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 60:2284–2287 [View Article][PubMed]
    [Google Scholar]
  11. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J.-S. 2010b; Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. Int J Syst Evol Microbiol 60:2913–2917 [View Article][PubMed]
    [Google Scholar]
  12. Kim S. J., Weon H. Y., Kim Y. S., Anandham R., Jeon Y. A., Hong S. B., Kwon S. W. 2010; Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 60:526–530 [View Article][PubMed]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  14. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  15. Luo X., Wang Z., Dai J., Zhang L., Fang C. 2010; Cohnella damensis sp. nov., a motile xylanolytic bacteria isolated from a low altitude area in Tibet. J Microbiol Biotechnol 20:410–414[PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  18. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
  19. Shiratori H., Tagami Y., Beppu T., Ueda K. 2010; Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 60:1344–1348 [View Article][PubMed]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  22. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  24. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  25. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030247-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030247-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error