1887

Abstract

A Gram-staining-negative, non-spore-forming, facultatively aerobic, non-motile, rod-shaped bacterial strain, BR-3, was isolated from a tidal flat on the western coast of Korea, and subjected to a polyphasic study. Strain BR-3 grew optimally at 25 °C, at pH 6.5–7.0 and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BR-3 fell within the clade comprising species of the genus , joining the type strain of , with which it exhibited highest 16S rRNA gene sequence similarity (98.2 %). 16S rRNA gene sequence similarity values between strain BR-3 and the type strains of the other species of the genus were in the range 93.8–95.9 %. A mean DNA–DNA relatedness value between strain BR-3 and . KCTC 12534 was 21 %. Strain BR-3 contained MK-7 as the predominant menaquinone and Cω7 and/or iso-C 2-OH and iso-C as the major fatty acids. The major polar lipids were phosphatidylethanolamine and an unidentified aminophospholipid. The DNA G+C content was 49.8 mol%. Differential phenotypic properties and phylogenetic and genetic distinctiveness of strain BR-3 demonstrated that this strain is separate from . as well as the other species of the genus . On the basis of the data presented, strain BR-3 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BR-3 ( = KCTC 23461  = CCUG 60742).

Funding
This study was supported by the:
  • Program for Collection, Management and Utilization of Biological Resources (Award 11-2008-00-002-00)
  • 21C Frontier Program of Microbial Genomics and Applications (Award MG05-0401-2-0)
  • Ministry of Education, Science and Technology (MEST)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030213-0
2012-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/515.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030213-0&mimeType=html&fmt=ahah

References

  1. An D.-S., Yin C.-R., Lee S.-T., Cho C.-H. 2009; Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 59:1122–1125 [View Article][PubMed]
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N. 2010; Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol 60:134–139 [View Article][PubMed]
    [Google Scholar]
  3. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  4. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  7. Jeon Y., Lee S.-S., Chung B. S., Kim J. M., Bae J.-W., Park S. K., Jeon C. O. 2009; Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. Int J Syst Evol Microbiol 59:1451–1454 [View Article][PubMed]
    [Google Scholar]
  8. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  9. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [View Article]
    [Google Scholar]
  10. Luo X., Zhang L., Dai J., Liu M., Zhang K., An H., Fang C. 2009; Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. Int J Syst Evol Microbiol 59:1447–1450 [View Article][PubMed]
    [Google Scholar]
  11. Madhaiyan M., Poonguzhali S., Lee J.-S., Senthilkumar M., Lee K. C., Sundaram S. 2010; Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 60:2451–2457 [View Article][PubMed]
    [Google Scholar]
  12. Männistö M. K., Tiirola M., McConnell J., Häggblom M. M. 2010; Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Microbiol 60:2849–2856 [View Article][PubMed]
    [Google Scholar]
  13. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  14. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N. 2007; Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57:2349–2354 [View Article][PubMed]
    [Google Scholar]
  15. Reichenbach H. 1992; The order Cytophagales . In The Prokaryotes, 2nd edn. vol. 4 pp. 3631–3675 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer; [CrossRef]
    [Google Scholar]
  16. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  17. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  18. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  19. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M. 2008; Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 58:2046–2050 [View Article][PubMed]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  21. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [View Article]
    [Google Scholar]
  22. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [View Article][PubMed]
    [Google Scholar]
  23. Yoon J.-H., Kim I.-G., Shin D.-Y., Kang K. H., Park Y.-H. 2003; Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030213-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030213-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error