sp. nov., isolated from marine aggregates formed with the diatom Free

Abstract

A Gram-negative, motile, rod-shaped bacterial strain, HP15, was isolated from aggregates taken from surface waters of the German Wadden Sea (German Bight). Of 82 marine isolates, HP15 was chosen for further study because of its high potential to induce production of transparent exopolymeric particles and aggregate formation while interacting with the diatom . HP15 grew optimally at 34–38 °C and pH 7.0–8.5, and was able to tolerate salt concentrations of 0.5–20 % (w/v) NaCl. HP15 was characterized chemotaxonomically by possessing ubiquinone-9 as the major respiratory lipoquinone, as well as C, Cω9 and Cω7/iso-C 2-OH as the predominant fatty acids. The DNA G+C content of strain HP15 was 56.9 mol%. The closest relative based on 16S rRNA gene sequence analysis was the type strain of , with 99 % similarity. Whole-genome relatedness values of HP15 to the type strains of , , and were less than 70 %, as determined by DNA–DNA hybridization. On the basis of phenotypic and chemotaxonomic properties as well as phylogenetic analyses, the isolate represents a novel species, sp. nov.; the type strain is HP15 ( = DSM 23420 = CIP 110141).

Funding
This study was supported by the:
  • Jacobs University Bremen
  • Helmholtz Graduate School for Polar and Marine Research
  • Max Planck Society
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030189-0
2012-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/124.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030189-0&mimeType=html&fmt=ahah

References

  1. Antunes A., França L., Rainey F. A., Huber R., Nobre M. F., Edwards K. J., da Costa M. S. 2007; Marinobacter salsuginis sp. nov., isolated from the brine-seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 57:1035–1040 [View Article][PubMed]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  3. Decho A. W. 1990; Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. In Oceanography and Marine Biology: an Annual Review vol. 28 pp. 73–153 Edited by Barnes H., Ansell A. D., Gibson R. N. Aberdeen, UK: Aberdeen University Press;
    [Google Scholar]
  4. Gärdes A., Kaeppel E. C., Shehzad A., Seebah S., Teeling H., Yarza P., Glöckner F. O., Grossart H.-P., Ullrich M. S. 2010; Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand Genomic Sci 3:97–107 [View Article][PubMed]
    [Google Scholar]
  5. Gärdes A., Iversen M. H., Grossart H. P., Passow U., Ullrich M. S. 2011; Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii . ISME J 5:436–445 [View Article][PubMed]
    [Google Scholar]
  6. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J. C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [View Article][PubMed]
    [Google Scholar]
  7. Gorshkova N. M., Ivanova E. P., Sergeev A. F., Zhukova N. V., Alexeeva Y., Wright J. P., Nicolau D. V., Mikhailov V. V., Christen R. 2003; Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53:2073–2078 [View Article][PubMed]
    [Google Scholar]
  8. Green D. H., Bowman J. P., Smith E. A., Gutierrez T., Bolch C. J. S. 2006; Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56:523–527 [View Article][PubMed]
    [Google Scholar]
  9. Grossart H. P., Schlingloff A., Bernhard M., Simon M., Brinkhoff T. 2004; Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol Ecol 47:387–396 [View Article][PubMed]
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Huu N. B., Denner E. B. M., Ha D. T., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [View Article][PubMed]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  15. Martín S., Márquez M. C., Sánchez-Porro C., Mellado E., Arahal D. R., Ventosa A. 2003; Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387 [View Article][PubMed]
    [Google Scholar]
  16. Martinez J. S., Butler A. 2007; Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. J Inorg Biochem 101:1692–1698 [View Article][PubMed]
    [Google Scholar]
  17. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  18. Montes M. J., Bozal N., Mercadé E. 2008; Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. Int J Syst Evol Microbiol 58:1346–1349 [View Article][PubMed]
    [Google Scholar]
  19. Roh S. W., Quan Z. X., Nam Y. D., Chang H. W., Kim K. H., Rhee S. K., Oh H. M., Jeon C. O., Yoon J. H., Bae J. W. 2008; Marinobacter goseongensis sp. nov., from seawater. Int J Syst Evol Microbiol 58:2866–2870 [View Article][PubMed]
    [Google Scholar]
  20. Romanenko L. A., Schumann P., Rohde M., Zhukova N. V., Mikhailov V. V., Stackebrandt E. 2005; Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148 [View Article][PubMed]
    [Google Scholar]
  21. Shieh W. Y., Jean W. D., Lin Y. T., Tseng M. 2003; Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49:244–252 [View Article][PubMed]
    [Google Scholar]
  22. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  23. Takai K., Moyer C. L., Miyazaki M., Nogi Y., Hirayama H., Nealson K. H., Horikoshi K. 2005; Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 9:17–27 [View Article][PubMed]
    [Google Scholar]
  24. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  25. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  27. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  28. Yoon J. H., Yeo S. H., Kim I. G., Oh T. K. 2004; Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1799–1803 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030189-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030189-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed