1887

Abstract

Strain KMM 3524 was isolated from the holothurian living in the Sea of Japan. The bacterial strain was pigmented, non-motile, Gram-negative, strictly aerobic and oxidase-, catalase- and -galactosidase-positive. From the results of 16S rDNA sequence analysis, strain KMM 3524 was found to be related closely to (98·1 %). DNA–DNA homology between strains KMM 3524 and DSM 5424 was 38 %; this showed clearly that the holothurian isolate KMM 3524 belongs to a novel species of the genus for which the name sp. nov. is proposed, with KMM 3524 (=NBRC 100249=LMG 21968) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02987-0
2004-07-01
2021-04-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541107.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02987-0&mimeType=html&fmt=ahah

References

  1. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Med Sci 37:911–917
    [Google Scholar]
  2. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  3. Dobson S. J., Colwell R. R., McMeekin T. A., Franzmann P. D. 1993; Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int J Syst Bacteriol 43:77–83 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein F. 1995 phylip (Phylogeny Inference Package) version 3.57c Seattle: University of Washington;
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  8. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Leisner J. J., Vancanneyt M., Lefebvre K., Vandemeulebroecke K., Hoste B., Euras Vilalta N., Rusul G., Swings J. 2002; Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia. Int J Syst Evol Microbiol 52:927–931 [CrossRef]
    [Google Scholar]
  11. Lemos M. L., Toranzo A. E., Barja J. L. 1985; Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 49:1541–1543
    [Google Scholar]
  12. McCammon S. A., Bowman J. P. 2000; Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp.nov. and Flavobacterium xanthum sp. nov., nom.rev. and reclassification of [ Flavobacterium ] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50:1055–1063 [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  14. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  15. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003a; Reichenbachia agariperforans gen. nov., sp. nov. a novel marine bacterium in the phylum Cytophaga–Flavobacterium–Bacteroides . Int J Syst Evol Microbiol 53:81–85 [CrossRef]
    [Google Scholar]
  16. Nedashkovskaya O. I., Kim S. B., Han S. K. & 7 other authors (2003b). Mesonia algae gen. nov. sp. nov. a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz. Kornm.). Int J Syst Evol Microbiol 531967–1971 [CrossRef]
    [Google Scholar]
  17. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga -like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb.nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp.nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef]
    [Google Scholar]
  20. Svetashev V. I., Vaskovsky V. E. 1972; A simplified technique for thin-layer microchromatography of lipids. J Chromatogr 67:376–378 [CrossRef]
    [Google Scholar]
  21. Svetashev V. I., Vysotskii M. V., Ivanova E. P., Mikhailov V. V. 1995; Cellular fatty acid of Alteromonas species. Syst Appl Microbiol 18:37–43 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  23. Van de Peer Y., De Rijk P., Wuyts J., Winkelmans T., De Wachter R. 2000; The European small subunit ribosomal RNA database. Nucleic Acids Res 28:175–176 [CrossRef]
    [Google Scholar]
  24. Vaskovsky V. E., Kostetsky E. Y., Vasendin I. M. 1975; A universal reagent for phospholipid analysis. J Chromatogr 114:129–141 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02987-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02987-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error