1887

Abstract

A phosphate-solubilizing bacterial strain designated OK2 was isolated from rhizospheric soil of grasses growing spontaneously in a soil from Spain. Cells of the strain were Gram-negative, strictly aerobic, rod-shaped and motile. Phylogenetic analysis of the 16S rRNA gene indicated that this bacterium belongs to the -subclass of within the genus and that the closest related species is . The strain produced catalase but not oxidase. Cellulose, casein, starch, gelatin and urea were not hydrolysed. Aesculin was hydrolysed. Growth was observed with many carbohydrates as carbon sources. The main non-polar fatty acids detected were hexadecenoic acid (16 : 1), hexadecanoic acid (16 : 0) and octadecenoic acid (18 : 1). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (3-OH 10 : 0), 3-hydroxydodecanoic acid (3-OH 12 : 0) and 2-hydroxydodecanoic acid (2-OH 12 : 0). The G+C DNA content determined was 59·3 mol%. DNA–DNA hybridization showed 48·7 % relatedness between strain OK2 and DSM 11363 and 26·2 % with respect to LMG 21640. Therefore, these results indicate that strain OK2 (=LMG 21974=CECT 5822) belongs to a novel species of the genus , and the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02966-0
2004-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540847.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02966-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Anzai, Y., Kim, H., Park, J.-Y., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  3. Behrendt, U., Ulrich, A., Schumann, P., Erler, W., Burghardt, J. & Seyfarth, W. ( 1999; ). A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 49, 297–308.[CrossRef]
    [Google Scholar]
  4. Behrendt, U., Ulrich, A. & Schumann, P. ( 2003; ). Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 53, 1461–1469.[CrossRef]
    [Google Scholar]
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. Chun, J. & Goodfellow, M. ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45, 240–245.[CrossRef]
    [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  8. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerdhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  9. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  10. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F. & Grimont, P. A. D. ( 1999; ). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49, 469–478.[CrossRef]
    [Google Scholar]
  11. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  12. Jahnke, K. D. ( 1992; ). Basic computer program for evaluation of spectroscopic renaturation data from Gilford System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  13. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  14. Kodama, K., Kimura, N. & Komagata, K. ( 1985; ). Two new species of Pseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int J Syst Bacteriol 35, 467–474.[CrossRef]
    [Google Scholar]
  15. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, AZ, USA.
  16. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  17. Oyaizu, H. & Komagata, K. ( 1983; ). Grouping of Pseudomonas species on the basis of the cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29, 17–40.[CrossRef]
    [Google Scholar]
  18. Palleroni, N. J. ( 1984; ). Genus I. Pseudomonas Migula 1894, 237AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  19. Palleroni, N. J. ( 1992; ). Present situation of the taxonomy of aerobic pseudomonads. In Pseudomonas: Molecular Biology and Biotechnology, pp. 105–115. Edited by E. Galli, S. Silver & B. Witholt. Washington, DC: American Society for Microbiology.
  20. Palleroni, N. J., Kunisawa, R., Contopoulou, R. & Doudoroff, M. ( 1973; ). Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23, 333–339.[CrossRef]
    [Google Scholar]
  21. Peix, A., Rivas-Boyero, A. A., Mateos, P. F., Rodríguez-Barrueco, C., Martínez-Molina, E. & Velázquez, E. ( 2001; ). Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33, 103–110.[CrossRef]
    [Google Scholar]
  22. Peix, A., Rivas, R., Mateos, P. F., Martínez-Molina, E., Rodríguez-Barrueco, C. & Velázquez, E. ( 2003; ). Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 53, 2067–2072.[CrossRef]
    [Google Scholar]
  23. Rivas, R., Velázquez, E., Valverde, A., Mateos, P. F. & Martínez-Molina, E. ( 2001; ). A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22, 1086–1089.[CrossRef]
    [Google Scholar]
  24. Rivas, R., Willems, A., Subba-Rao, N. S., Mateos, P. F., Kroppenstedt, R. M., Martínez-Molina, E., Gillis, M. & Velázquez, E. ( 2003; ). Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26, 47–53.[CrossRef]
    [Google Scholar]
  25. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  26. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02966-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02966-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error