1887

Abstract

A Gram-negative, facultatively anaerobic, chemo-organotrophic, non-pigmented, slow-growing bacterium was isolated from acidic peat and designated strain TPB6017. Cells of this strain were long rods that multiplied by normal cell division and were motile by means of a single flagellum. Cells grew under reduced oxygen tension and under anoxic conditions and were able to ferment sugars and several polysaccharides, including amorphous and crystalline cellulose. Strain TPB6017 was a psychrotolerant acidophile capable of growth between pH 3.0 and 7.5 (optimum 4.5–5.0) and at 4–35 °C (optimum 20–28 °C). It was extremely sensitive to salt stress; growth was inhibited at NaCl concentrations above 0.1 % (w/v). The major fatty acids were iso-C and iso-Cω9; the polar lipids were phosphatidylethanolamine and a number of phospholipids and aminophospholipids with an unknown structure. The quinone was MK-8. The DNA G+C content was 57.6 mol%. Comparative 16S rRNA gene sequence analysis revealed that strain TPB6017 was a member of subdivision 1 of the phylum and belonged to a phylogenetic lineage defined by the acidophilic aerobic chemo-organotroph (92.3 % sequence similarity). However, cell morphology, type of flagellation, the absence of pigment, differences in fatty acid and polar lipid composition, possession of a cellulolytic capability, inability to grow under fully oxic conditions and good growth in anoxic conditions distinguished strain TPB6017 from . Therefore, it is proposed that strain TPB6017 represents a novel acidobacterium species in a new genus, gen. nov., sp. nov.; strain TPB6017 ( = DSM 23630 = VKM B-2570) is the type strain.

Funding
This study was supported by the:
  • Program ‘Molecular and Cell Biology’ of Russian Academy of Sciences
  • RosNauka (Award 02.740.11.0023)
  • Russian Fund of Basic Research (Award 09-04-00004)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029629-0
2012-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/2/430.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029629-0&mimeType=html&fmt=ahah

References

  1. Barns S. M., Takala S. L., Kuske C. R. 1999; Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737[PubMed]
    [Google Scholar]
  2. Blöthe M., Akob D. M., Kostka J. E., Göschel K., Drake H. L., Küsel K. 2008; pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. Appl Environ Microbiol 74:1019–1029 [View Article][PubMed]
    [Google Scholar]
  3. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [View Article]
    [Google Scholar]
  4. Coupland K., Johnson D. B. 2008; Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279:30–35 [View Article][PubMed]
    [Google Scholar]
  5. Dedysh S. N., Pankratov T. A., Belova S. E., Kulichevskaya I. S., Liesack W. 2006; Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117 [View Article][PubMed]
    [Google Scholar]
  6. Eichorst S. A., Breznak J. A., Schmidt T. M. 2007; Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria . Appl Environ Microbiol 73:2708–2717 [View Article][PubMed]
    [Google Scholar]
  7. Eichorst S. A., Kuske C. R., Schmidt T. M. 2011; Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria . Appl Environ Microbiol 77:586–596 [View Article][PubMed]
    [Google Scholar]
  8. Farkaš V., Lišková M., Biely P. 1985; Novel media for detection of microbial producers of cellulase and xylanase. FEMS Microbiol Lett 28:137–140 [View Article]
    [Google Scholar]
  9. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors) 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Jackson C. R., Liew K. C., Yule C. M. 2009; Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb Ecol 57:402–412 [View Article][PubMed]
    [Google Scholar]
  12. Juottonen H., Galand P. E., Tuittila E.-S., Laine J., Fritze H., Yrjälä K. 2005; Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557 [View Article][PubMed]
    [Google Scholar]
  13. Juretschko S., Loy A., Lehner A., Wagner M. 2002; The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25:84–99 [View Article][PubMed]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  15. Kates M. 1972 Techniques of Lipidology New York: Elsevier;
    [Google Scholar]
  16. Kishimoto N., Kosako Y., Tano T. 1991; Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7 [View Article]
    [Google Scholar]
  17. Koch I. H., Gich F., Dunfield P. F., Overmann J. 2008; Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122 [View Article][PubMed]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  19. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. 1992; Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600 [CrossRef]
    [Google Scholar]
  20. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516 [View Article][PubMed]
    [Google Scholar]
  21. Pankratov T. A., Dedysh S. N. 2010; Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959 [View Article][PubMed]
    [Google Scholar]
  22. Pankratov T. A., Serkebaeva Y. M., Kulichevskaya I. S., Liesack W., Dedysh S. N. 2008; Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2:551–560 [View Article][PubMed]
    [Google Scholar]
  23. Pankratov T. A., Ivanova A. O., Dedysh S. N., Liesack W. 2011; Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol 13:1800–1814 [View Article][PubMed]
    [Google Scholar]
  24. Pansu M., Gautheyrou J. 2006 Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods pp. 371–397 Berlin, Heidelberg: Springer Verlag;
    [Google Scholar]
  25. Sizova M. V., Panikov N. S., Tourova T. P., Flanagan P. W. 2003; Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiol Ecol 45:301–315 [View Article][PubMed]
    [Google Scholar]
  26. Ward N. L., Challacombe J. F., Janssen P. H., Henrissat B., Coutinho P. M., Wu M., Xie G., Haft D. H., Sait M. other authors 2009; Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056 [View Article][PubMed]
    [Google Scholar]
  27. Wood P. J., Erfle J. D., Teather R. M. 1988; Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol 160:59–74 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029629-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029629-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error