1887

Abstract

A Gram-negative, facultatively anaerobic, chemo-organotrophic, non-pigmented, slow-growing bacterium was isolated from acidic peat and designated strain TPB6017. Cells of this strain were long rods that multiplied by normal cell division and were motile by means of a single flagellum. Cells grew under reduced oxygen tension and under anoxic conditions and were able to ferment sugars and several polysaccharides, including amorphous and crystalline cellulose. Strain TPB6017 was a psychrotolerant acidophile capable of growth between pH 3.0 and 7.5 (optimum 4.5–5.0) and at 4–35 °C (optimum 20–28 °C). It was extremely sensitive to salt stress; growth was inhibited at NaCl concentrations above 0.1 % (w/v). The major fatty acids were iso-C and iso-Cω9; the polar lipids were phosphatidylethanolamine and a number of phospholipids and aminophospholipids with an unknown structure. The quinone was MK-8. The DNA G+C content was 57.6 mol%. Comparative 16S rRNA gene sequence analysis revealed that strain TPB6017 was a member of subdivision 1 of the phylum and belonged to a phylogenetic lineage defined by the acidophilic aerobic chemo-organotroph (92.3 % sequence similarity). However, cell morphology, type of flagellation, the absence of pigment, differences in fatty acid and polar lipid composition, possession of a cellulolytic capability, inability to grow under fully oxic conditions and good growth in anoxic conditions distinguished strain TPB6017 from . Therefore, it is proposed that strain TPB6017 represents a novel acidobacterium species in a new genus, gen. nov., sp. nov.; strain TPB6017 ( = DSM 23630 = VKM B-2570) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029629-0
2012-02-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/2/430.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029629-0&mimeType=html&fmt=ahah

References

  1. Barns S. M. , Takala S. L. , Kuske C. R. . ( 1999; ). Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. . Appl Environ Microbiol 65:, 1731–1737.[PubMed]
    [Google Scholar]
  2. Blöthe M. , Akob D. M. , Kostka J. E. , Göschel K. , Drake H. L. , Küsel K. . ( 2008; ). pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. . Appl Environ Microbiol 74:, 1019–1029. [CrossRef] [PubMed]
    [Google Scholar]
  3. Collins M. D. . ( 1985; ). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  4. Coupland K. , Johnson D. B. . ( 2008; ). Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. . FEMS Microbiol Lett 279:, 30–35. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dedysh S. N. , Pankratov T. A. , Belova S. E. , Kulichevskaya I. S. , Liesack W. . ( 2006; ). Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. . Appl Environ Microbiol 72:, 2110–2117. [CrossRef] [PubMed]
    [Google Scholar]
  6. Eichorst S. A. , Breznak J. A. , Schmidt T. M. . ( 2007; ). Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria . . Appl Environ Microbiol 73:, 2708–2717. [CrossRef] [PubMed]
    [Google Scholar]
  7. Eichorst S. A. , Kuske C. R. , Schmidt T. M. . ( 2011; ). Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria . . Appl Environ Microbiol 77:, 586–596. [CrossRef] [PubMed]
    [Google Scholar]
  8. Farkaš V. , Lišková M. , Biely P. . ( 1985; ). Novel media for detection of microbial producers of cellulase and xylanase. . FEMS Microbiol Lett 28:, 137–140. [CrossRef]
    [Google Scholar]
  9. Felsenstein J. . ( 1989; ). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  10. Gerhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . (editors) ( 1981; ). Manual of Methods for General Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Jackson C. R. , Liew K. C. , Yule C. M. . ( 2009; ). Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. . Microb Ecol 57:, 402–412. [CrossRef] [PubMed]
    [Google Scholar]
  12. Juottonen H. , Galand P. E. , Tuittila E.-S. , Laine J. , Fritze H. , Yrjälä K. . ( 2005; ). Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. . Environ Microbiol 7:, 1547–1557. [CrossRef] [PubMed]
    [Google Scholar]
  13. Juretschko S. , Loy A. , Lehner A. , Wagner M. . ( 2002; ). The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. . Syst Appl Microbiol 25:, 84–99. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  15. Kates M. . ( 1972; ). Techniques of Lipidology. New York:: Elsevier;.
    [Google Scholar]
  16. Kishimoto N. , Kosako Y. , Tano T. . ( 1991; ). Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. . Curr Microbiol 22:, 1–7. [CrossRef]
    [Google Scholar]
  17. Koch I. H. , Gich F. , Dunfield P. F. , Overmann J. . ( 2008; ). Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. . Int J Syst Evol Microbiol 58:, 1114–1122. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  19. Manz W. , Amann R. , Ludwig W. , Wagner M. , Schleifer K.-H. . ( 1992; ). Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: problems and solutions. . Syst Appl Microbiol 15:, 593–600.[CrossRef]
    [Google Scholar]
  20. Owen R. J. , Hill L. R. , Lapage S. P. . ( 1969; ). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7:, 503–516. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pankratov T. A. , Dedysh S. N. . ( 2010; ). Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. . Int J Syst Evol Microbiol 60:, 2951–2959. [CrossRef] [PubMed]
    [Google Scholar]
  22. Pankratov T. A. , Serkebaeva Y. M. , Kulichevskaya I. S. , Liesack W. , Dedysh S. N. . ( 2008; ). Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. . ISME J 2:, 551–560. [CrossRef] [PubMed]
    [Google Scholar]
  23. Pankratov T. A. , Ivanova A. O. , Dedysh S. N. , Liesack W. . ( 2011; ). Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. . Environ Microbiol 13:, 1800–1814. [CrossRef] [PubMed]
    [Google Scholar]
  24. Pansu M. , Gautheyrou J. . ( 2006; ). Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods, pp. 371–397. Berlin, Heidelberg:: Springer Verlag;.
    [Google Scholar]
  25. Sizova M. V. , Panikov N. S. , Tourova T. P. , Flanagan P. W. . ( 2003; ). Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. . FEMS Microbiol Ecol 45:, 301–315. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ward N. L. , Challacombe J. F. , Janssen P. H. , Henrissat B. , Coutinho P. M. , Wu M. , Xie G. , Haft D. H. , Sait M. . & other authors ( 2009; ). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. . Appl Environ Microbiol 75:, 2046–2056. [CrossRef] [PubMed]
    [Google Scholar]
  27. Wood P. J. , Erfle J. D. , Teather R. M. . ( 1988; ). Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases. . Methods Enzymol 160:, 59–74. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029629-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029629-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error