1887

Abstract

A novel thermophilic, microaerophilic, sulfur-reducing bacterium designated strain St55B was isolated from a sulfide chimney in the hydrothermal field of Suiyo Seamount (Izu-Bonin Arc, Western Pacific). Cells of the isolate were rod-shaped and tended to form a chain-link circular structure (a rotund body) at exponential phase under good growth conditions. The isolate was a chemoheterotroph requiring yeast extract for growth. Although strain St55B used oxygen as an electron acceptor, it could not form colonies in an oxygen concentration of more than 5 % (v/v). The isolate also used nitrate, nitrite or elemental sulfur in the absence of oxygen. A phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was closely related to , belonging to the phylum ‘’ (sequence similarity 99·5 %). However, strain St55B differed from in terms of usage of electron donors, cellular fatty acid profile and DNA G+C content. In addition, a DNA–DNA hybridization test indicated low relatedness between the isolate and . For the reasons given above, the name sp. nov. is proposed for strain St55B (=NBRC 100063=DSM 15757).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02962-0
2004-09-01
2020-12-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541561.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02962-0&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P, Raguénès G., Cueff V, Cambon-Bonavita M.-A. 2002a; Caminibacter hydrogeniphilus gen. nov., sp. nov. a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Alain K., Marteinsson V. T., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Prieur D., Birrien J.-L. 2002b; Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339 [CrossRef]
    [Google Scholar]
  3. Brock T. D., Edwards M. R. 1970; Fine structure of Thermus aquaticus , an extreme thermophile. J Bacteriol 104:509–517
    [Google Scholar]
  4. Corre E., Reysenbach A. L., Prieur D. 2001; Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335
    [Google Scholar]
  5. Da Costa M. S., Rainey F. A. 2001; Family I. Thermaceae fam. nov. In Bergey's Manual of Systematic Bacteriology: the Archaea and the Deeply Branching and Phototrophic Bacteria . , 2nd edn. vol 1 pp  403–404 Edited by Boone D. R., Castenholz R. W. New York: Springer;
  6. DSMZ 1993 Catalogue of Strains , 5th edn. Braunschweig: Gesellschaft fur Biotechnologische Forschung;
    [Google Scholar]
  7. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A.-L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  8. Hanada S., Takaichi S., Matsuura K., Nakamura K. 2002; Roseiflexus castenholzii gen. nov., sp. nov. a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193
    [Google Scholar]
  9. Hattori S., Kamagata Y., Hanada S., Shoun H. 2000; Thermacetogenium phaeum gen. nov., sp. nov. a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609 [CrossRef]
    [Google Scholar]
  10. Heising S., Richter L., Ludwig W., Schink B. 1999; Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch Microbiol 172:116–124 [CrossRef]
    [Google Scholar]
  11. Huber H., Diller S., Horn C., Rachel R. 2002; Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae . Int J Syst Evol Microbiol 52:1859–1865 [CrossRef]
    [Google Scholar]
  12. Jeanthon C., L'Haridon S., Cueff V., Banta A., Reysenbach A.-L., Prieur D. 2002; Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium . Int J Syst Evol Microbiol 52:765–772 [CrossRef]
    [Google Scholar]
  13. L'Haridon S., Cilia V, Messner P, Raguénès G., Gambacorta A, Sleytr U. B., Prieur D.., Jeanthon C. 1998; Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711 [CrossRef]
    [Google Scholar]
  14. Marteinsson V. T., Birrien J. L., Kristjánsson J. K., Prieur D. 1995; First isolation of thermophilic aerobic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 18:163–174 [CrossRef]
    [Google Scholar]
  15. Miroshnichenko M. L., Kostrikina N. A., L'Haridon S., Jeanthon C., Hippe H., Stackebrandt E., Bonch-Osmolovskaya E. A. 2002; Nautilia lithotrophica gen. nov., sp. nov. a thermophilic sulfur-reducing ε -proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304 [CrossRef]
    [Google Scholar]
  16. Miroshnichenko M. L., L'Haridon S., Jeanthon C. & 7 other authors (2003a). Oceanithermus profundus gen. nov., sp. nov. a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752 [CrossRef]
    [Google Scholar]
  17. Miroshnichenko M. L., L'Haridon S., Nercessian O. & 8 other authors (2003b). Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:1143–1148 [CrossRef]
    [Google Scholar]
  18. Mori K., Yamamoto H., Kamagata Y., Hatsu M., Takamizawa K. 2000; Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Microbiol 50:1723–1729
    [Google Scholar]
  19. Nakagawa S., Takai K., Horikoshi K., Sako Y. 2003; Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Sako Y., Nakagawa S., Takai K., Horikoshi K. 2003; Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65 [CrossRef]
    [Google Scholar]
  22. Shintani T., Liu W. T., Hanada S., Kamagata Y., Miyaoka S., Suzuki T., Nakamura K. 2000; Micropruina glycogenica gen. nov., sp., nov., a new Gram-positive glycogen-accumulating bac!terium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207 [CrossRef]
    [Google Scholar]
  23. Takai K., Horikoshi K. 1999; Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297
    [Google Scholar]
  24. Takai K., Komatsu T., Inagaki F., Horikoshi K. 2001; Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629 [CrossRef]
    [Google Scholar]
  25. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003; Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  26. Tamaki H., Hanada S., Kamagata Y., Nakamura K., Nomura N., Nakano K., Matsumura M. 2003; Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53:519–526 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Vetriani C., Speck M. D., Ellor S. V., Lutz R. A., Starovoytov V. 2004; Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181 [CrossRef]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  30. Wery N., Lesongeur F., Pignet P., Derennes V., Cambon-Bonavita M.-A., Godfroy A., Barbier G. 2001; Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales , isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02962-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02962-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error