1887

Abstract

A novel Gram-negative, aerobic, catalase- and oxidase-positive, non-sporulating, non-motile, rod-shaped bacterium, designated strain UST081027-248, was isolated from seawater of the Red Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain UST081027-248 fell within the genus . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of species ranged from 95.3 % (with ) to 98.2 % (with ). However, levels of DNA–DNA relatedness between strain UST081027-248 and the type strains of closely related species were below 70 %. Optimal growth of the isolate occurred in the presence of 2.0 % NaCl, at pH 8.0–9.0 and at 28–36 °C. The isolate did not produce bacteriochlorophyll . The predominant cellular fatty acids were Cω6, summed feature 8 (Cω6 and/or Cω7) and C 2-OH. The genomic DNA G+C content of strain UST081027-248 was 60.4 mol%. Phenotypic properties and phylogenetic distinctiveness clearly indicated that strain UST081027-248 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is UST081027-248 ( = JCM 17468 = NRRL 59511).

Funding
This study was supported by the:
  • , KAUST Global Partnership Program , (Award KAUST005-CML07/08)
  • , Leading Academic Discipline Project of Shanghai Municipal Education Commission , (Award J50701)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029561-0
2012-06-01
2021-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1348.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029561-0&mimeType=html&fmt=ahah

References

  1. Acar J. F. 1980; The disc susceptibility test. In Antibiotics in Laboratory Medicine pp. 24–54 Edited by Lorian V. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  4. Cano R. J., Torres M. J., Klem R. E., Palomares J. C. 1992; DNA hybridization assay using ATTOPHOS, a fluorescent substrate for alkaline phosphatase. Biotechniques 12:264–269[PubMed]
    [Google Scholar]
  5. Chen Y. G., Cui X. L., Pukall R., Li H. M., Yang Y. L., Xu L. H., Wen M. L., Peng Q., Jiang C. L. 2007; Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332 [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [CrossRef]
    [Google Scholar]
  7. Collins C. H., Lyne P. M., Grange J. M. 1989 Collins and Lyne’s Microbiological Methods London: Butterworths;
    [Google Scholar]
  8. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [CrossRef][PubMed]
    [Google Scholar]
  9. Denhardt D. T. 1966; A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23:641–646 [CrossRef][PubMed]
    [Google Scholar]
  10. Denner E. B. M., Vybiral D., Koblízek M., Kämpfer P., Busse H. J., Velimirov B. 2002; Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52:1655–1661 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. 1997; An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol 46:101–111 [CrossRef][PubMed]
    [Google Scholar]
  14. Fuerst J. A., Hawkins J. A., Holmes A., Sly L. I., Moore C. J., Stackebrandt E. 1993; Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43:125–134 [CrossRef][PubMed]
    [Google Scholar]
  15. Ivanova E. P., Bowman J. P., Lysenko A. M., Zhukova N. V., Gorshkova N. M., Kuznetsova T. A., Kalinovskaya N. I., Shevchenko L. S., Mikhailov V. V. 2005; Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 28:123–130 [CrossRef][PubMed]
    [Google Scholar]
  16. Kates M. 1986 Techniques of Lipidology Amsterdam: Elsevier;
    [Google Scholar]
  17. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Kwon K. K., Woo J.-H., Yang S.-H., Kang J.-H., Kang S. G., Kim S.-J., Sato T., Kato C. 2007; Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov.. Int J Syst Evol Microbiol 57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
  19. Lau K. W., Ng C. Y., Ren J., Lau S. C., Qian P. Y., Wong P. K., Lau T. C., Wu M. 2005; Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’. Int J Syst Evol Microbiol 55:1051–1057 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee K.-B., Liu C.-T., Anzai Y., Kim H., Aono T., Oyaizu H. 2005; The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov.. Int J Syst Evol Microbiol 55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee Y. S., Lee D.-H., Kahng H.-Y., Kim E. M., Jung J. S. 2010; Erythrobacter gangjinensis sp. nov., a marine bacterium isolated from seawater. Int J Syst Evol Microbiol 60:1413–1417 [CrossRef][PubMed]
    [Google Scholar]
  22. MacDonell M. T., Singleton F. L., Hood M. A. 1982; Diluent composition for use of API 20E in characterizing marine and estuarine bacteria. Appl Environ Microbiol 44:423–427[PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  24. Nedashkovskaya O. I., Kim S. B., Han S. K., Lysenko A. M., Rohde M., Zhukova N. V., Falsen E., Frolova G. M., Mikhailov V. V., Bae K. S. 2003; Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int J Syst Evol Microbiol 53:1967–1971 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  26. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
  27. Shiba T., Simidu U. 1982; Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a . Int J Syst Bacteriol 32:211–217 [CrossRef]
    [Google Scholar]
  28. Shrout J. D., Scheetz T. E., Casavant T. L., Parkin G. F. 2005; Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria. Appl Microbiol Biotechnol 67:261–268 [CrossRef][PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  32. Xu M. S., Xin Y. H., Yu Y., Zhang J. L., Zhou Y. G., Liu H. C., Tian J. S., Li Y. 2010; Erythrobacter nanhaisediminis sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 60:2215–2220 [CrossRef][PubMed]
    [Google Scholar]
  33. Yoon J.-H., Kim H., Kim I.-G., Kang K. H., Park Y.-H. 2003; Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53:1169–1174 [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon J.-H., Kang K. H., Oh T.-K., Park Y.-H. 2004; Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1981–1985 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon J.-H., Oh T.-K., Park Y.-H. 2005; Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:71–75 [CrossRef][PubMed]
    [Google Scholar]
  36. Yurkov V., Stackebrandt E., Holmes A., Fuerst J. A., Hugenholtz P., Golecki J., Gad’on N., Gorlenko V. M., Kompantseva E. I., Drews G. 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov.. Int J Syst Bacteriol 44:427–434 [CrossRef][PubMed]
    [Google Scholar]
  37. ZoBell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029561-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029561-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error