1887

Abstract

An aerobic, Gram-reaction-negative, chemo-organotrophic bacterium, designated strain SSW-35, was isolated from seawater in Jeju, Republic of Korea. Cells were motile, short rods; colonies were circular, smooth, convex, translucent and beige in colour. No diffusible pigment formed on any of the media tested. The bacterium grew at 4–30 °C and pH 7.1–10.1. Phylogenetic analysis based on 16S rRNA gene sequences showed that the organism was related to members of the genus , its closest recognized relatives being Fg36 (98.1 % sequence similarity) and DSW-18 (97.8 %). Levels of 16S rRNA gene similarity between strain SSW-35 and other recognized species of the genus were all <97 %. Polar lipid analysis revealed the presence of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unknown lipid as major components, as well as small amounts of two unknown phospholipids. The predominant ubiquinone was Q-10. The major cellular fatty acid was C (summed feature 7), and the 3-hydroxy fatty acids detected were C 3-OH and C 3-OH. The genomic DNA G+C content was 55.0 mol%. In DNA–DNA hybridization experiments, the relatedness values between strain SSW-35 and the type strains of the phylogenetically closest recognized species were all <11 %. On the basis of the phenotypic and genotypic characteristics, phylogenetic analysis and DNA–DNA relatedness, a novel species, sp. nov., is proposed. The type strain is SSW-35 ( = KCTC 12722 = JCM 14020).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029462-0
2012-03-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/586.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029462-0&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Hosoya S., Yokota A.. ( 2007;). Loktanella atrilutea sp. nov., isolated from seawater in Japan. . Int J Syst Evol Microbiol 57:, 1966–1969. [CrossRef][PubMed]
    [Google Scholar]
  7. Ivanova E. P., Zhukova N. V., Lysenko A. M., Gorshkova N. M., Sergeev A. F., Mikhailov V. V., Bowman J. P.. ( 2005;). Loktanella agnita sp. nov. and Loktanella rosea sp. nov., from the north-west Pacific Ocean. . Int J Syst Evol Microbiol 55:, 2203–2207. [CrossRef][PubMed]
    [Google Scholar]
  8. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  9. Kroppenstedt R. M.. ( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics, pp. 173–199. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  10. Lau S. C. K., Tsoi M. M. Y., Li X., Plakhotnikova I., Wu M., Wong P.-K., Qian P.-Y.. ( 2004;). Loktanella hongkongensis sp. nov., a novel member of the α-Proteobacteria originating from marine biofilms in Hong Kong waters. . Int J Syst Evol Microbiol 54:, 2281–2284. [CrossRef][PubMed]
    [Google Scholar]
  11. Lee S. D.. ( 2006;). Kineococcus marinus sp. nov., isolated from marine sediment of the coast of Jeju, Korea. . Int J Syst Evol Microbiol 56:, 1279–1283. [CrossRef][PubMed]
    [Google Scholar]
  12. MacFaddin J. F.. ( 1980;). Biochemical Tests for Identification of Medical Bacteria, , 2nd edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  14. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  16. Moon Y. G., Seo S. H., Lee S. D., Heo M. S.. ( 2010;). Loktanella pyoseonensis sp. nov., isolated from beach sand, and emended description of the genus Loktanella. . Int J Syst Evol Microbiol 60:, 785–789. [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  19. Van Trappen S., Mergaert J., Swings J.. ( 2004;). Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. . Int J Syst Evol Microbiol 54:, 1263–1269. [CrossRef][PubMed]
    [Google Scholar]
  20. Weon H.-Y., Kim B.-Y., Yoo S.-H., Kim J.-S., Kwon S.-W., Go S.-J., Stackebrandt E.. ( 2006;). Loktanella koreensis sp. nov., isolated from sea sand in Korea. . Int J Syst Evol Microbiol 56:, 2199–2202. [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon J.-H., Kang S.-J., Lee S.-Y., Oh T.-K.. ( 2007;). Loktanella maricola sp. nov., isolated from seawater of the East Sea in Korea. . Int J Syst Evol Microbiol 57:, 1799–1802. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029462-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029462-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error