1887

Abstract

sp, nov. includes three moderately halophilic, exopolysaccharide-producing strains isolated from saline soils in Jaén (south-eastern Spain). These strains can grow anaerobically using either nitrate or nitrite as terminal electron acceptor and hydrolyse both tyrosine and phenylalanine. Their G+C content varies between 72·6 and 74·3 mol%. The affiliation of the isolates with the genus was confirmed by 16S rRNA gene sequence comparison. DNA–DNA hybridization shows 70·4–82·7 % relatedness among the three strains. Nevertheless, their relatedness is less than 43 % compared to related reference strains. The proposed type strain for is strain Al12 (=CECT 5797=DSM 15911). It grows best at 8 % (w/v) sea salts and requires the presence of Na. Its major fatty acids are 18 : 1 7, 16 : 0, 16 : 1 7, and 15 : 0 iso 2-OH. The predominant respiratory lipoquinone found in strain Al12 is ubiquinone with nine isoprene units (Q-9).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02942-0
2004-05-01
2021-03-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540733.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02942-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002; Proposal of Cobetia marina gen. nov., comb. nov. within the family Halomonadaceae , to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [CrossRef]
    [Google Scholar]
  2. Arias S., Del Moral A., Ferrer M. R., Quesada E., Béjar V. 2003; Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura , with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326 [CrossRef]
    [Google Scholar]
  3. Béjar V., Llamas I., Calvo C., Quesada E. 1998; Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina . J Biotechnol 61:135–141 [CrossRef]
    [Google Scholar]
  4. Bouchotroch S., Quesada E., Del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [CrossRef]
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  6. Calvo C., Ferrer M. R., Martínez-Checa F., Béjar V., Quesada E. 1995; Some rheological properties of the extracellular polysaccharide produced by Volcaniella eurihalina F2-7. Appl Biochem Biotechnol 55:45–54 [CrossRef]
    [Google Scholar]
  7. Calvo C., Martínez-Checa F., Mota A., Béjar V., Quesada E. 1998; Effect of cations, pH and sulfate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J Ind Microbiol Biotechnol 20:205–209 [CrossRef]
    [Google Scholar]
  8. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Bauman et al ., 1993), Halomonas (Vreeland et al ., 1980),and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas , and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  9. Ferragut C., Leclerc H. 1976; Étude comparative des méthodes de détermination du T m de l'ADN bactérien. Ann Microbiol 127:223–235
    [Google Scholar]
  10. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  11. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F. 1998; Carnimonas nigrificans gen. nov., sp. nov. a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686 [CrossRef]
    [Google Scholar]
  12. Heyrman J., Balcaen A., De Vos P., Swings J. 2002; Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 52:2049–2054 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  14. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (Synonyms, Erwinia herbicola, Erwinia milletiae ) identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand 94:205–213
    [Google Scholar]
  15. Margesin R., Shinner F. 2001; Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:75–83
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–212 [CrossRef]
    [Google Scholar]
  17. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  18. Martínez-Checa F., Toledo F. L., Vílchez R., Quesada E., Calvo C. 2002; Yield production, chemical composition and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Appl Microbiol Biotechnol 58:358–363 [CrossRef]
    [Google Scholar]
  19. Mata J. A., Martínez-Cánovas M. J., Quesada E., Béjar V. 2002; A detailed phenotypic characterization of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  20. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui , Volcaniella eurihalina , and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45:712–716 [CrossRef]
    [Google Scholar]
  21. Mormile M. R., Romine M. F., García M. T., Ventosa A., Baisey T. J., Peyton B. M. 1999; Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22:551–558 [CrossRef]
    [Google Scholar]
  22. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists pp  277–296, 2nd edn. Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  23. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA composition and levels of DNA–DNA hybridization. In Chemical Methods in Bacterial Systematics pp  67–93 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  24. Peyton B. M., Mormile M. R., Petersen J. N. 2001; Nitrate reduction with Halomonas campisalis . Kinetics of denitrification at pH 9 and 12·5 % NaCl. Water Res 35:4237–4242 [CrossRef]
    [Google Scholar]
  25. Quesada E., Ventosa A., Rodríguez-Valera F., Megías L., Ramos-Cormenzana A. 1983; Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657
    [Google Scholar]
  26. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila , a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34:287–292 [CrossRef]
    [Google Scholar]
  27. Quesada E., Valderrama M. J., Béjar V., Ventosa A., Gutiérrez M. C., Ruíz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int J Syst Bacteriol 40:261–267 [CrossRef]
    [Google Scholar]
  28. Quesada E., Béjar V., Calvo C. 1993; Exopolysaccaharide production by Volcaniella eurihalina . Experientia 49:1037–1041 [CrossRef]
    [Google Scholar]
  29. Quesada E., Béjar V., Ferrer M. R. 8 other authors 2004; Moderately halophilic, exopolysaccharide-producing bacteria. In Halophilic Microorganisms pp  297–314 Edited by Ventosa A. Heidelberg: Springer;
    [Google Scholar]
  30. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotropic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [CrossRef]
    [Google Scholar]
  31. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E. 2002; Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium . Int J Syst Evol Microbiol 52:1767–1772 [CrossRef]
    [Google Scholar]
  32. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  33. Sneath P. H. A., Johnson R. 1972; The influence on numerical taxonomic similarities of errors in microbiological tests. J Gen Microbiol 72:377–392 [CrossRef]
    [Google Scholar]
  34. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy. The Principles and Practice of Numerical Classification San Francisco: Freeman, Williams & Wilkins;
    [Google Scholar]
  35. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak K., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  37. Ventosa A., Nieto J. J. 1995; Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94 [CrossRef]
    [Google Scholar]
  38. Ventosa A., Quesada E., Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  39. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  40. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata , a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  41. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R., Abraham W. R., Lunsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  42. Valderrama M.J., Quesada E., Béjar V., Ventosa A., Gutierrez M.C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1991; Deleya salina sp. nov., a moderately halophilic Gram-negative bacterium. Int J Syst Bacteriol 41:377–384 [CrossRef]
    [Google Scholar]
  43. Yoon J.-H., Choi J. H., Lee K.-C., Kho Y. H., Kang K. H., Park Y.-H. 2001; Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51:1171–1177 [CrossRef]
    [Google Scholar]
  44. Ziemke F., Manfred G. H., Lalucat J., Roselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02942-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02942-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error