1887

Abstract

An acid-fast, rapidly growing, psychrotolerant short rod was isolated from pond water near a uranium mine. Phylogenetic analysis of the 16S rRNA gene sequence grouped this strain with the rapidly growing mycobacteria. The 16S rRNA gene sequence of isolate WA101 showed highest similarity to that of DSM 44076; however, DNA–DNA relatedness between the two strains was less than 30 %. Chemotaxonomic analyses, which included fatty acid and mycolic acid patterns, confirmed the classification of strain WA101 in the genus . Physiological data, including antibiotic resistance, NaCl tolerance, carbon sources, temperature growth range and enzyme activities, were also determined. Based on the genotypic and phenotypic results it is proposed that isolate WA101 represents a novel species. The name sp. nov. is proposed, with type strain WA101 (=DSM 44697=LMG 21953).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02938-0
2004-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541459.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02938-0&mimeType=html&fmt=ahah

References

  1. Butler W. R., Guthertz L. S. 2001; Mycolic acid analysis by high-performance liquid chromatography for identification of Mycobacterium species. Clin Microbiol Rev 14:704–726 [CrossRef]
    [Google Scholar]
  2. Butler W. R., Thibert L., Kilburn J. O. 1992; Identification of Mycobacterium avium complex strains and some similar species by high-performance liquid chromatography. J Clin Microbiol 30:2698–2704
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. Collins C. H., Grange J. M., Yates M. D. 1984; A review: mycobacteria in water. J Appl Bacteriol 57:193–211 [CrossRef]
    [Google Scholar]
  5. Dailloux M., Laurain C., Weber M., Hartemann P. H. 1999; Water and nontuberculous mycobacteria. Water Res 33:2219–2228 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp  21–33 Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Gordon R. E., Mihm J. M. 1962; Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98:628–636
    [Google Scholar]
  9. Häggblom M. M., Nohynek L. J., Palleroni N. J., Kronqvist K., Nurmiaho-Lassila E.-L., Salkinoja-Salonen M. S., Klatte S., Kroppenstedt R. M. 1994; Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al . 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int J Syst Bacteriol 44:485–493 [CrossRef]
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  12. Kazda J. 1980; Mycobacterium sphagni sp. nov. Int J Syst Bacteriol 30:77–81 [CrossRef]
    [Google Scholar]
  13. Khan A. A., Kim S.-J., Paine D. D., Cerniglia C. E. 2002; Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1, as Mycobacterium vanbaalenii sp. nov. Int J Syst Evol Microbiol 52:1997–2002 [CrossRef]
    [Google Scholar]
  14. Kirschner P., Springer B., Vogel U., Meier A., Wrede A., Kiekenbeck M., Bange F.-C., Böttger E. C. 1993; Genotypic identification of mycobacteria by nucleotide acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol 31:2882–2889
    [Google Scholar]
  15. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega 2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  16. Lévy-Frébault V. V., Portaels F. 1992; Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species. Int J Syst Bacteriol 42:315–323 [CrossRef]
    [Google Scholar]
  17. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  18. Miller J. L. 1997 Sherlock Mycobacteria Identification by High Performance Liquid Chromatography. A Training Manual Newark, DE: MIDI, Inc;
    [Google Scholar]
  19. Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Magnusson M. 1984; Mycolic acid patterns of some species of Mycobacterium . Arch Microbiol 139:241–256
    [Google Scholar]
  20. Rhodes M. W., Kator H., Kotob S. 7 other authors 2003; Mycobacterium shottsii sp. nov., a slowly growing species isolated from Chesapeake Bay striped bass ( Morone saxatilis . Int J Syst Evol Microbiol 53:421–424 [CrossRef]
    [Google Scholar]
  21. Rivas R., Velázquez E., Valverde A., Mateos P. F., Martínez-Molina E. 2001; A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22:1086–1089 [CrossRef]
    [Google Scholar]
  22. Rivas R., Sánchez M., Trujillo M. E., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Velázquez E. 2003; Xylanimonas cellulosilytica gen. nov., sp. nov. a xylanolytic bacterium isolated from a decayed tree ( Ulmus nigra . Int J Syst Evol Microbiol 53:99–103 [CrossRef]
    [Google Scholar]
  23. Schröder K.-H., Naumann L., Kroppenstedt R. M., Reischl U. 1997; Mycobacterium hassiacum sp. nov., a new rapidly growing thermophilic mycobacterium. Int J Syst Bacteriol 47:86–91 [CrossRef]
    [Google Scholar]
  24. Springer B., Tortoli E., Richter I. 7 other authors 1995; Mycobacterium conspicuum sp. nov., a new species isolated from patients with disseminated infections. J Clin Microbiol 33:2805–2811
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
    [Google Scholar]
  26. Vuorio R., Andersson M. A., Rainey F. A., Kroppenstedt R. M., Kämpfer P., Busse H.-J., Viljanen M., Salkinoja-Salonen M. 1999; A new rapidly growing mycobacterial species, Mycobacterium murale sp. nov., isolated from the indoor walls of a children's day care centre. Int J Syst Bacteriol 49:25–35 [CrossRef]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  28. Willumsen P., Karlson U., Stackebrandt E., Kroppenstedt R. M. 2001; Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol 51:1715–1722 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02938-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02938-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error