1887

Abstract

A Gram-positive-staining, non-endospore-forming actinobacterium, designated C7, was isolated from the leaf surface of . On the basis of 16S rRNA gene sequence analysis, strain C7 was shown to belong to the genus and was most closely related to SJS0289/JS1 (98.0 % 16S rRNA gene sequence similarity), IMMIB RIV-956 (96.4 %) and IMMIB SR-4 (95.7 %). The quinone system consisted predominantly of the menaquinones MK-9(H), MK-8(H) and MK-7(H). The major components in the polar lipid profile were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. Mycolic acids were present. These chemotaxonomic traits and the major fatty acids, which were Cω7, C, C, Cω9 and tuberculostearic acid, supported the affiliation of strain C7 with the genus . Physiological and biochemical analysis revealed clear differences between strain C7 and its closest phylogenetic neighbours. Therefore, strain C7 represents a novel species, for which the name sp. nov. is proposed. The type strain is C7 ( = CCUG 60465 = CCM 7855).

Funding
This study was supported by the:
  • DFG Priority Program 1374 ‘Infrastructure-Biodiversity-Exploratories’
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029322-0
2011-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2702.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029322-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  2. Collins M. D., Goodfellow M., Minnikin D. E. 1979; Isoprenoid quinones in the classification of coryneform and related bacteria. J Gen Microbiol 110:127–136[PubMed] [CrossRef]
    [Google Scholar]
  3. Fischer M., Bossdorf O., Gockel S., Hänsel F., Hemp A., Hessenmöller D., Korte G., Nieschulze J., Pfeiffer S., Prati D. 2010; Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl Ecol 11:473–485 [View Article]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [View Article][PubMed]
    [Google Scholar]
  6. Jones A. L., Payne G. D., Goodfellow M. 2010; Williamsia faeni sp. nov., an actinomycete isolated from a hay meadow. Int J Syst Evol Microbiol 60:2548–2551 [View Article][PubMed]
    [Google Scholar]
  7. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  8. Kämpfer P., Kroppenstedt R. M. 2004; Pseudonocardia benzenivorans sp. nov.. Int J Syst Evol Microbiol 54:749–751 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article]
    [Google Scholar]
  10. Kämpfer P., Andersson M. A., Rainey F. A., Kroppenstedt R. M., Salkinoja-Salonen M. 1999; Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children’s day care centre. Int J Syst Bacteriol 49:681–687 [View Article][PubMed]
    [Google Scholar]
  11. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  12. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 88:200–204[PubMed] [CrossRef]
    [Google Scholar]
  13. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  14. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48[PubMed]
    [Google Scholar]
  15. Pathom-aree W., Nogi Y., Sutcliffe I. C., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M. 2006; Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 56:1123–1126 [View Article][PubMed]
    [Google Scholar]
  16. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  17. Stach J. E. M., Maldonado L. A., Ward A. C., Bull A. T., Goodfellow M. 2004; Williamsia maris sp. nov., a novel actinomycete isolated from the Sea of Japan. Int J Syst Evol Microbiol 54:191–194 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  19. Yassin A. F., Hupfer H. 2006; Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 56:193–197 [View Article][PubMed]
    [Google Scholar]
  20. Yassin A. F., Young C. C., Lai W.-A., Hupfer H., Arun A. B., Shen F.-T., Rekha P. D., Ho M.-J. 2007; Williamsia serinedens sp. nov., isolated from an oil-contaminated soil. Int J Syst Evol Microbiol 57:558–561 [View Article][PubMed]
    [Google Scholar]
  21. Zhi X. Y., Li W.-J., Stackebrandt E. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608 [View Article][PubMed]
    [Google Scholar]
  22. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029322-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029322-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error