1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming bacterial strain, YCS-5, was isolated from seawater off the southern coast of Korea. Strain YCS-5 grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain YCS-5 fell within the clade comprising species. Strain YCS-5 exhibited 16S rRNA gene sequence similarity values of 96.6, 95.7 and 97.9 % to the type strains of , and , respectively, and less than 89.8 % to strains of other species used in the phylogenetic analysis. Strain YCS-5 contained Q-8 as the predominant ubiquinone and iso-C, iso-C, iso-C 3-OH and iso-Cω9 as the major fatty acids. The polar lipid profile of strain YCS-5 was similar to that of . SW-125, with phosphatidylglycerol and an unidentified aminolipid as major polar lipids. The DNA G+C content was 47 mol%. The mean DNA–DNA relatedness value between strain YCS-5 and . JCM 16211 was 12 %. Differential phenotypic properties and the phylogenetic and genetic distinctiveness of strain YCS-5 demonstrated that this strain is distinguishable from other species. On the basis of the data presented, strain YCS-5 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is YCS-5 ( = KCTC 23420 = CCUG 60526).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029314-0
2012-03-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/511.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029314-0&mimeType=html&fmt=ahah

References

  1. Ahn J. , Park J.-W. , McConnell J. A. , Ahn Y.-B. , Häggblom M. M. . ( 2011; ). Kangiella spongicola sp. nov., a halophilic marine bacterium isolated from the marine sponge Chondrilla nucula. . Int J Syst Evol Microbiol 61:, 961–964.[CrossRef]
    [Google Scholar]
  2. Bruns A. , Rohde M. , Berthe-Corti L. . ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. . Int J Syst Evol Microbiol 51:, 1997–2006. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cowan S. T. , Steel K. J. . ( 1965; ). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  4. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  6. Lányí B. . ( 1987; ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  7. Leifson E. . ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  8. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  9. Romanenko L. A. , Tanaka N. , Frolova G. M. , Mikhailov V. V. . ( 2010; ). Kangiella japonica sp. nov., isolated from a marine environment. . Int J Syst Evol Microbiol 60:, 2583–2586. [CrossRef] [PubMed]
    [Google Scholar]
  10. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  11. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  12. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  13. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  14. Yoon J.-H. , Kim H. , Kim S.-B. , Kim H.-J. , Kim W. Y. , Lee S. T. , Goodfellow M. , Park Y.-H. . ( 1996; ). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. . Int J Syst Bacteriol 46:, 502–505. [CrossRef]
    [Google Scholar]
  15. Yoon J.-H. , Lee S. T. , Park Y.-H. . ( 1998; ). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. . Int J Syst Bacteriol 48:, 187–194. [CrossRef] [PubMed]
    [Google Scholar]
  16. Yoon J.-H. , Oh T.-K. , Park Y.-H. . ( 2004; ). Kangiella koreensis gen. nov., sp. nov. and Kangiella aquimarina sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 54:, 1829–1835. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029314-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029314-0
Loading

Data & Media loading...

Supplements

Supplementary figure 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error