1887

Abstract

tRNA UAA (trnL) intron sequences are used as genetic markers for differentiating cyanobacteria and for constructing phylogenies, since the introns are thought to be more variable among close relatives than is the 16S rRNA gene, the conventional phylogenetic marker. The evolution of trnL intron sequences and their utility as a phylogenetic marker were analysed among heterocystous cyanobacteria with maximum-parsimony, maximum-likelihood and Bayesian inference by comparing their evolutionary information to that of the 16S rRNA gene. Trees inferred from the 16S rRNA gene and the distribution of two repeat classes in the P6b stem–loop of the trnL intron were in clear conflict. The results show that, while similar heptanucleotide repeat classes I and II in the P6b stem–loop of the trnL intron could be found among distant relatives, some close relatives harboured different repeat classes with a high sequence difference. Moreover, heptanucleotide repeat class II and other sequences from the P6b stem–loop of the trnL intron interrupted several other intergenic regions in the genomes of heterocystous cyanobacteria. Cluster analyses based on conserved intron sequences without loops P6b, P9 and parts of P5 corresponded in most clades to the 16S rRNA gene phylogeny, although the relationships were not resolved well, according to low bootstrap support. Thus, the hypervariable loop sequences of the trnL intron, especially the P6b stem–loop, cannot be used for phylogenetic analysis and conclusions cannot be drawn about species relationships on the basis of these elements. Evolutionary scenarios are discussed considering the origin of the repeats.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02928-0
2004-05-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540765.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02928-0&mimeType=html&fmt=ahah

References

  1. Alfaro, M. E., Zoller, S. & Lutzoni, F. ( 2003; ). Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20, 255–266.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psiblast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Besendahl, A., Qiu, Y.-L., Lee, J., Palmer, J. D. & Bhattacharya, D. ( 2000; ). The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I intron. Curr Genet 37, 12–23.[CrossRef]
    [Google Scholar]
  4. Biniszkiewicz, D., Cesnaviciene, E. & Shub, D. A. ( 1994; ). Self-splicing group I intron in cyanobacterial initiator methionine tRNA: evidence for lateral transfer of introns in bacteria. EMBO J 13, 4629–4635.
    [Google Scholar]
  5. Castenholz, R. W. ( 2001; ). Phylum BX. Cyanobacteria. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 473–599. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  6. Cech, T. R., Damberger, S. H. & Gutell, R. R. ( 1994; ). Representation of the secondary and tertiary structures of group I introns. Nat Struct Biol 1, 273–280.[CrossRef]
    [Google Scholar]
  7. Costa, J. L., Paulsrud, P. & Lindblad, P. ( 1999; ). Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol Ecol 28, 85–91.[CrossRef]
    [Google Scholar]
  8. Costa, J. L., Paulsrud, P., Rikkinen, J. & Lindblad, P. ( 2001; ). Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Environ Microbiol 67, 4393–4396.[CrossRef]
    [Google Scholar]
  9. Costa, J. L., Paulsrud, P. & Lindblad, P. ( 2002; ). The cyanobacterial tRNALeu (UAA) intron: evolutionary patterns in a genetic marker. Mol Biol Evol 19, 850–857.[CrossRef]
    [Google Scholar]
  10. Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. & Douzery, E. J. P. ( 2003; ). Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol 20, 248–254.[CrossRef]
    [Google Scholar]
  11. Goldman, N., Anderson, J. P. & Rodrigo, A. G. ( 2000; ). Likelihood-based tests of topologies in phylogenetics. Syst Biol 49, 652–670.[CrossRef]
    [Google Scholar]
  12. Gugger, M., Lyra, C., Henriksen, P., Coute, A., Humbert, J. F. & Sivonen, K. ( 2002; ). Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int J Syst Evol Microbiol 52, 1867–1880.[CrossRef]
    [Google Scholar]
  13. Houmard, J., Capuano, V., Colombano, M. V., Coursin, T. & Tandeau de Marsac, N. ( 1990; ). Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A 87, 2152–2156.[CrossRef]
    [Google Scholar]
  14. Huelsenbeck, J. P. ( 2000; ). MrBayes: Bayesian inference of phylogeny. Distributed by the author. Department of Biology, University of Rochester, NY, USA.
  15. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  16. Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. ( 2001; ). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314.[CrossRef]
    [Google Scholar]
  17. Ishida, T., Watanabe, M. M., Sugiyama, J. & Yokota, A. ( 2001; ). Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 201, 79–82.[CrossRef]
    [Google Scholar]
  18. Jackman, D. M. & Mulligan, M. E. ( 1995; ). Characterization of a nitrogen-fixation (nif) gene cluster from Anabaena azollae 1a shows that closely related cyanobacteria have highly variable but structured intergenic regions. Microbiology 141, 2235–2244.[CrossRef]
    [Google Scholar]
  19. Kuhsel, M. G., Strickland, R. & Palmer, J. D. ( 1990; ). An ancient group I intron shared by eubacteria and chloroplasts. Science 250, 1570–1573.[CrossRef]
    [Google Scholar]
  20. Lehtimäki, J., Lyra, C., Suomalainen, S., Sundman, P., Rouhiainen, L., Paulin, L., Salkinoja-Salonen, M. & Sivonen, K. ( 2000; ). Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. Int J Syst Evol Microbiol 50, 1043–1053.[CrossRef]
    [Google Scholar]
  21. Lewin, B. ( 2000; ). Genes VII, part 4, pp. 347–479. Oxford: Oxford University Press.
  22. Linke, K., Hemmerich, J. & Lumbsch, H. T. ( 2003; ). Identification of Nostoc cyanobionts in some Peltigera species using a group I intron in the tRNALeu gene. Bibliotheca Lichenol 86, 113–118.
    [Google Scholar]
  23. Lohtander, K., Källersjö, M., Moberg, R. & Tehler, A. ( 2000; ). The family Physciaceae in Fennoscandia: phylogeny inferred from ITS sequences. Mycologia 92, 728–735.[CrossRef]
    [Google Scholar]
  24. Ludwig, W. & Schleifer, K. H. ( 1999; ). Phylogeny of Bacteria beyond the 16S rRNA standard. ASM News 65, 752–757.
    [Google Scholar]
  25. Lyra, C., Suomalainen, S., Gugger, M., Vezie, C., Sundman, P., Paulin, L. & Sivonen, K. ( 2001; ). Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51, 513–526.
    [Google Scholar]
  26. Meeks, J. C., Elhai, J., Thiel, T., Potts, M., Larimer, F., Lamerdin, J., Predki, P. & Atlas, R. ( 2001; ). An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70, 85–106.[CrossRef]
    [Google Scholar]
  27. Miao, V. P. W., Rabenau, A. & Lee, A. ( 1997; ). Cultural and molecular characterization of photobionts of Peltigera membranacea. Lichenologist 29, 571–586.
    [Google Scholar]
  28. Oksanen, I., Lohtander, K., Paulsrud, P. & Rikkinen, J. ( 2002; ). A molecular approach to cyanobacterial diversity in a rock-pool community involving gelatinous lichens and free-living Nostoc colonies. Ann Bot Fennici 39, 93–99.
    [Google Scholar]
  29. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  30. Paquin, B., Kathe, S. D., Nierzwicki-Bauer, S. A. & Shub, D. A. ( 1997; ). Origin and evolution of group-I introns in cyanobacterial tRNA genes. J Bacteriol 179, 6798–6806.
    [Google Scholar]
  31. Paulsrud, P. ( 2001; ). The Nostoc symbiont of lichens: diversity, specificity and cellular modifications. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. Acta Univ Upsaliensis 662, 1–55.
    [Google Scholar]
  32. Paulsrud, P. & Lindblad, P. ( 1998; ). Sequence variation of the tRNALeu intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens. Appl Environ Microbiol 64, 310–315.
    [Google Scholar]
  33. Paulsrud, P., Rikkinen, J. & Lindblad, P. ( 1998; ). Cyanobiont specificity in some Nostoc-containing lichens and a Peltigera aphthosa photosymbiodeme. New Phytol 139, 517–524.[CrossRef]
    [Google Scholar]
  34. Paulsrud, P., Rikkinen, J. & Lindblad, P. ( 2000; ). Spatial patterns of photobiont diversity in some Nostoc-containing lichens. New Phytol 146, 291–299.[CrossRef]
    [Google Scholar]
  35. Paulsrud, P., Rikkinen, J. & Lindblad, P. ( 2001; ). Field investigations on cyanobacterial specificity in Peltigera aphthosa. New Phytol 152, 117–123.[CrossRef]
    [Google Scholar]
  36. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  37. Posada, D. & Crandall, K. A. ( 2001; ). Selecting the best-fit model of nucleotide substitution. Syst Biol 50, 580–601.[CrossRef]
    [Google Scholar]
  38. Rikkinen, J., Oksanen, I. & Lohtander, K. ( 2002; ). Ecological lichen guilds share related cyanobacterial symbionts. Science 297, 357.[CrossRef]
    [Google Scholar]
  39. Rudi, K. & Jakobsen, K. S. ( 1997; ). Cyanobacterial tRNALeu (UAA) group-I introns have a polyphyletic origin. FEMS Microbiol Lett 156, 293–298.[CrossRef]
    [Google Scholar]
  40. Rudi, K. & Jakobsen, K. S. ( 1999; ). Complex evolutionary patterns of tRNALeu (UAA) group-I introns in cyanobacterial radiation. J Bacteriol 181, 3445–3451.
    [Google Scholar]
  41. Rudi, K., Fossheim, T. & Jakobsen, K. S. ( 2002; ). Nested evolution of a tRNALeu (UAA) group I intron by both horizontal intron transfer and recombination of the entire tRNA locus. J Bacteriol 184, 666–671.[CrossRef]
    [Google Scholar]
  42. Shimodaira, H. & Hasegawa, M. ( 1999; ). Multiple comparison of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16, 1114–1116.[CrossRef]
    [Google Scholar]
  43. Strehl, B., Holtzendorff, J., Partensky, F. & Hess, W. R. ( 1999; ). A small and compact genome in the marine cyanobacterium Prochlorococcus marinus CCMP 1375: lack of an intron in the gene for tRNALeu (UAA) and a single copy of the rRNA operon. FEMS Microbiol Lett 181, 261–266.[CrossRef]
    [Google Scholar]
  44. Summerfield, T. C., Galloway, D. J. & Eaton-Rye, J. J. ( 2002; ). Species of cyanolichens from Pseudocyphellaria with indistinguishable ITS sequences have different photobionts. New Phytol 155, 121–129.[CrossRef]
    [Google Scholar]
  45. Suzuki, Y., Glazko, G. V. & Nei, M. ( 2002; ). Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc Natl Acad Sci U S A 99, 16138–16143.[CrossRef]
    [Google Scholar]
  46. Swofford, D. L. ( 2002; ). paup*: Phylogenetic analysis using parsimony (* and other methods), version 4. Sunderland, MA: Sinauer Associates.
  47. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  48. Turner, S., Pryer, K. M., Miao, V. P. W. & Palmer, J. D. ( 1999; ). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46, 327–338.[CrossRef]
    [Google Scholar]
  49. Vepritskiy, A. A., Vitol, I. A. & Nierzwicki-Bauer, S. A. ( 2002; ). Novel group I intron in the tRNALeu (UAA) gene of a γ-proteobacterium isolated from a deep subsurface environment. J Bacteriol 184, 1481–1487.[CrossRef]
    [Google Scholar]
  50. Vergnaud, G. & Denoeud, F. ( 2000; ). Minisatellites: mutability and genome architecture. Genome Res 10, 899–907.[CrossRef]
    [Google Scholar]
  51. Wilmotte, A., Van der Auwera, G. & De Wachter, R. ( 1993; ). Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317, 96–100.[CrossRef]
    [Google Scholar]
  52. Wirtz, N., Lumbsch, H. T., Green, T. G. A., Türk, R., Pintado, A., Sancho, L. & Schroeter, B. ( 2003; ). Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol 160, 177–183.[CrossRef]
    [Google Scholar]
  53. Woese, C. R. ( 2000; ). Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 97, 8392–8396.[CrossRef]
    [Google Scholar]
  54. Wright, D., Prickett, T., Helm, R. F. & Potts, M. ( 2001; ). Form species Nostoc commune (Cyanobacteria). Int J Syst Evol Microbiol 51, 1839–1852.[CrossRef]
    [Google Scholar]
  55. Xu, M.-Q., Kathe, S. D., Goodrich-Blair, H., Nierzwicki-Bauer, S. A. & Shub, D. A. ( 1990; ). Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Science 250, 1566–1570.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02928-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02928-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 765 - 772

Database accession numbers and origin for cyanobacterial 16S rRNA and trnL intron sequences (Fig. 2) Strains that gave no amplification product of the trnL intron Bayesian majority rule (50%) consensus tree showing phylogenetic relationships among cyanobacteria based on sequence data from the 16S rRNA gene and trnL intron. [Single PDF file](188 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error