1887

Abstract

A polyphasic approach was used to describe the phylogenetic position of 22 chitinolytic bacterial isolates that were able to grow at the expense of intact, living hyphae of several soil fungi. These isolates, which were found in slightly acidic dune soils in the Netherlands, were strictly aerobic, Gram-negative rods. Cells grown in liquid cultures were flagellated and possessed pili. A wide range of sugars, alcohols, organic acids and amino acids could be metabolized, whereas several di- and trisaccharides could not be used as substrates. The major cellular fatty acids were C, C 7 and C 7. DNA G+C contents were 57–62 mol%. Analysis of nearly full-length 16S rDNA sequences showed that the isolates were related closely to each other (>98·6 % sequence similarity) and could be assigned to the -, family ‘’, order ‘’. The most closely related species belonged to the genera and , exhibiting 95·9–96·7 % ( species) and 94·3–95·6 % ( species) 16S rDNA sequence similarity to the isolates. Several physiological and biochemical properties indicated that the isolates could be distinguished clearly from both of these genera. Therefore, it is proposed that the isolates described in this study are representatives of a novel genus, gen. nov. Genomic fingerprinting (BOX-PCR), detailed analysis of 16S rDNA patterns and physiological characterization (Biolog) of the isolates revealed the existence of four subclusters. The name gen. nov., sp. nov. has been given to one subcluster (four isolates) that appears to be in the centre of the novel genus; isolates in the other subclusters have been tentatively named sp. The type strain of gen. nov., sp. nov. is Ter6 (=NCCB 100033=LMG 21973).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02920-0
2004-05-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540857.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02920-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Aragno, M. & Schlegel, H. G. ( 1978; ). Aquaspirillum autotrophicum, a new species of hydrogen-oxidizing, facultatively autotrophic bacteria. Int J Syst Bacteriol 28, 112–116.[CrossRef]
    [Google Scholar]
  3. Baldani, J. I., Pot, B., Kirchhof, G. & 8 other authors ( 1996; ). Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int J Syst Bacteriol 46, 802–810.[CrossRef]
    [Google Scholar]
  4. Christensen, H., Bisgaard, M., Frederiksen, W., Mutters, R., Kuhnert, P. & Olsen, J. E. ( 2001; ). Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify Recommendation 30b of the Bacteriological Code (1990 Revision). Int J Syst Evol Microbiol 51, 2221–2225.[CrossRef]
    [Google Scholar]
  5. De Boer, W., Klein Gunnewiek, P. J. A., Lafeber, P., Janse, J. D., Spit, B. E. & Woldendorp, J. W. ( 1998; ). Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30, 193–203.[CrossRef]
    [Google Scholar]
  6. De Boer, W., Gerards, S., Klein Gunnewiek, P. J. A. & Modderman, R. ( 1999; ). Response of the chitinolytic microbial community to chitin amendments of dune soils. Biol Fertil Soils 29, 170–177.[CrossRef]
    [Google Scholar]
  7. De Boer, W., Klein Gunnewiek, P. J. A., Kowalchuk, G. A. & Van Veen, J. A. ( 2001; ). Growth of chitinolytic dune soil β-subclass Proteobacteria in response to invading fungal hyphae. Appl Environ Microbiol 67, 3358–3362.[CrossRef]
    [Google Scholar]
  8. Ding, L. & Yokota, A. ( 2002; ). Phylogenetic analysis of the genus Aquaspirillum based on 16S rRNA gene sequences. FEMS Microbiol Lett 212, 165–169.[CrossRef]
    [Google Scholar]
  9. Egli, K., Fanger, U., Alvarez, P. J. J., Siegrist, H., van der Meer, J. R. & Zehnder, A. J. B. ( 2001; ). Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175, 198–207.[CrossRef]
    [Google Scholar]
  10. Garrity, G. M., Winters, M. & Searles, D. B. ( 2001; ). Taxonomic outline of the procaryotic genera. In Bergey's Manual of Systematic Bacteriology, 2nd edn, online release 1.0, April 2001. New York: Springer (http://www.cme.msu.edu/bergeys/april2001-genus.pdf).
  11. Gooday, G. W. ( 1990; ). The ecology of chitin degradation. Adv Microb Ecol 11, 387–430.
    [Google Scholar]
  12. Hsu, S. C. & Lockwood, J. L. ( 1975; ). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29, 422–426.
    [Google Scholar]
  13. Janse, J. D. ( 1991; ). Pathovar discrimination within Pseudomonas syringae subsp. savastanoi using whole cell fatty acid analysis and pathogenicity as criteria. Syst Appl Microbiol 14, 79–84.[CrossRef]
    [Google Scholar]
  14. Jendrossek, D. ( 2001; ). Transfer of [Pseudomonas] lemoignei, a Gram-negative rod with restricted catabolic capacity, to Paucimonas gen. nov. with one species, Paucimonas lemoignei comb. nov. Int J Syst Evol Microbiol 51, 905–908.[CrossRef]
    [Google Scholar]
  15. Kirchhof, G., Eckert, B., Stoffels, M., Baldani, J. I., Reis, V. M. & Hartmann, A. ( 2001; ). Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51, 157–168.
    [Google Scholar]
  16. Lincoln, S. P., Fermor, T. R. & Tindall, B. J. ( 1999; ). Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. Int J Syst Bacteriol 49, 1577–1589.[CrossRef]
    [Google Scholar]
  17. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  18. Morrissey, R. F., Dugan, E. P. & Koths, J. S. ( 1976; ). Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol Biochem 8, 23–28.[CrossRef]
    [Google Scholar]
  19. Rademaker, J. L. W. & de Bruijn, F. J. ( 1997; ). Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer-assisted pattern analysis. In DNA Markers: Protocols, Applications, and Overviews, pp. 151–171. Edited by G. Caetano-Anollés & P. M. Gresshoff. New York: Wiley.
  20. Saito, A., Fujii, T., Yoneyama, T. & Miyashita, K. ( 1998; ). glkA is involved in glucose repression of chitinase production in Streptomyces lividans. J Bacteriol 180, 2911–2914.
    [Google Scholar]
  21. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Sneath, P. H. A. ( 1984; ). Genus Janthinobacterium De Ley, Seegers and Gillis 1978, 164AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 376–377. Edited by N. R. Kreig & J. G. Holt. Baltimore: Williams & Wilkins.
  23. Sneath, P. H. A. & Sokal, R. R. ( 1973; ). Numerical Taxonomy: the Principles and Practice of Numerical Classification. San Francisco: Freeman.
  24. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  25. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  26. Valverde, A., Velázquez, E., Gutiérrez, C., Cervantes, E., Ventosa, A. & Igual, J.-M. ( 2003; ). Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53, 1979–1983.[CrossRef]
    [Google Scholar]
  27. Walsh, G. A., Murphy, R. A., Killeen, G. F., Headon, D. R. & Power, R. F. ( 1995; ). Detection and quantification of supplemental fungal β-glucanase activity in animal feed. J Anim Sci 73, 1074–1076.
    [Google Scholar]
  28. Wilson, M. S., Herrick, J. B., Jeon, C. O., Hinman, D. E. & Madsen, E. L. ( 2003; ). Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol 69, 2172–2181.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02920-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02920-0
Loading

Data & Media loading...

vol. , part 3, pp. 857 – 864

Physiological characteristics of the Ter isolates ( ).

Differentiating respiratory activities (BIOLOG GN) between BOX-PCR clusters of Ter isolates ( ).

Unrooted tree detailing the phylogenetic relationships between 22 Ter isolates ( ), based on their 16S rDNA sequences.

Unrooted tree of BOX-PCR-generated genomic fingerprints of 18 Ter isolates.

[Single PDF file](198 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error