1887

Abstract

Genetic diversity in tropical rhizobial species is still poorly known. With the aim of increasing this knowledge, three ribosomal regions of 119 strains belonging to the official Brazilian culture collection of rhizobia and classified as based on morphological and physiological characteristics were analysed by RFLP-PCR. The strains were isolated from 33 legume species, representing nine tribes and all three subfamilies; they all form very effective N-fixing nodules and 43 of them are recommended for use in Brazilian commercial inoculants as the most effective for their hosts. For the 16S rRNA gene, type and reference strains of fell into two major clusters, joined at a level of similarity of 50 %, which included 52 strains, 90 % of which were isolated from soybean. Two other clusters, joined at a similarity of 53 %, included reference strains of , but not USDA 76; furthermore, two other major clusters were identified and all strains were clustered at a final level of similarity of only 28 %. For the intergenic spacer (IGS) between genes coding for the 16S and 23S rRNA, strains were clustered at a final level of similarity of 27 %. Reference strains of fell into a major group with 51 strains, 84 % isolated from soybean, with a similarity of 59 %, while strains of fell into another major group, with a similarity of 55 %, clustering 44 strains, 59 % of which were isolated from hosts other than soybean. New clusters were also observed for the IGS region. The largest number of differences was detected in the analysis of the 23S rRNA gene, and 16 groups and isolated strains were joined at a very low level of similarity (16 %). In a combined analysis with the three ribosomal regions, the majority of strains isolated from soybean clustered with a similarity of 54 % with type and reference strains of , while most strains isolated from Brazilian indigenous legume species grouped with at a level of similarity of 46 %. All strains were clustered at a very low level of similarity (27 %), and at least two new clusters were clearly defined. These new clusters might be related to intraspecific differences or to novel subspecies, or even to novel species; indeed, strains from one of these clusters show higher 16S rRNA gene sequence similarity to members of the genus . The results obtained in this study emphasize the high level of diversity of symbiotic diazotrophic bacteria in the tropics that still remains to be determined.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02917-0
2006-01-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/1/217.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02917-0&mimeType=html&fmt=ahah

References

  1. Abaidoo, R. C., Keyser, H. H., Singleton, P. W. & Borthakur, D. ( 2000; ). Bradyrhizobium spp. (TGx) isolates nodulating the new soybean cultivars in Africa are diverse and distinct from bradyrhizobia that nodulate North American soybeans. Int J Syst Evol Microbiol 50, 225–234.[CrossRef]
    [Google Scholar]
  2. Allen, O. N. & Allen, E. ( 1981; ). The Leguminosae: a Source Book of Characteristics, Uses and Nodulation. Madison, WI: University of Wisconsin Press.
  3. Boddey, L. H. & Hungria, M. ( 1997; ). Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biol Fertil Soils 25, 407–415.[CrossRef]
    [Google Scholar]
  4. Chen, L. S., Figueredo, A., Pedrosa, F. O. & Hungria, M. ( 2000; ). Genetic characterization of soybean rhizobia in Paraguay. Appl Environ Microbiol 66, 5099–5103.[CrossRef]
    [Google Scholar]
  5. Chen, L. S., Figueredo, A., Villani, H., Michajluk, J. & Hungria, M. ( 2002; ). Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean nodules in Paraguay. Biol Fertil Soils 35, 448–457.[CrossRef]
    [Google Scholar]
  6. Chueire, L. M. O., Bangel, E., Mostasso, F. L., Campo, R. J., Pedrosa, F. O. & Hungria, M. ( 2003; ). Classificação taxonômica das estirpes de rizóbio recomendadas para as culturas da soja e do feijoeiro baseada no seqüenciamento do gene 16S rRNA. Rev Bras Ci Solo 27, 833–840 (in Portuguese).[CrossRef]
    [Google Scholar]
  7. Doignon-Bourcier, F., Sy, A., Willems, A., Torck, U., Dreyfus, B., Gillis, M. & de Lajudie, P. ( 1999; ). Diversity of bradyrhizobia from 27 tropical Leguminosae species native of Senegal. Syst Appl Microbiol 22, 647–661.[CrossRef]
    [Google Scholar]
  8. Doignon-Bourcier, F., Willems, A., Coopman, R., Laguerre, G., Gillis, M. & de Lajudie, P. ( 2000; ). Genotypic characterization of Bradyrhizobium strains nodulating small Senegalese legumes by 16S-23S rRNA intergenic gene spacers and amplified fragment length polymorphism fingerprint analyses. Appl Environ Microbiol 66, 3987–3997.[CrossRef]
    [Google Scholar]
  9. FEPAGRO ( 1999; ). Culture Collection Catalogue, 8th edn. Porto Alegre: Fundação Estadual de Pesquisa Agropecuária.
  10. Fernandes, M., Fernandes, R. P. M. & Hungria, M. ( 2003; ). Caracterização genética de rizóbios nativos dos tabuleiros costeiros eficientes em culturas do guandu e caupi. Pesq Agropec Bras 38, 911–920 (in Portuguese).
    [Google Scholar]
  11. Fred, E. B., Baldwin, I. L. & McCoy, E. ( 1932; ). Root Nodule Bacteria of Leguminous Plants. Madison, WI: University of Wisconsin Press.
  12. Garrity, G. M. & Holt, J. G. ( 2001; ). The road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 119–166. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  13. Hara, F. A. S. ( 2003; ). Ecologia de rizóbia em condições ácidas e de baixa fertilidade da Amazônia. PhD thesis, Instituto Nacional de Pesquisas da Amazônia/Universidade Federal da Amazônia, Manaus, Brazil (in Portuguese).
  14. Hungria, M., Loureiro, M. F., Mendes, I. C., Campo, R. J. & Graham, P. H. ( 2005; ). Inoculant preparation, production and application. In Nitrogen Fixation: Origins, Applications, and Research Progress, vol. 4, Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment, pp. 223–254. Edited by D. Werner & W. E. Newton. Dordrecht: Springer.
  15. Jarabo-Lorenzo, A., Velázquez, E., Pérez-Galdona, R., Vega-Hernández, M. C., Martínez-Molina, E., Mateos, P. F., Vinuesa, P., Martínez-Romero, E. & León-Barrios, M. ( 2000; ). Restriction fragment length polymorphism analysis of 16S rDNA and low molecular weight RNA profiling of rhizobial isolates from shrubby legumes endemic to the Canary Islands. Syst Appl Microbiol 23, 418–425.[CrossRef]
    [Google Scholar]
  16. Jordan, D. C. ( 1982; ). Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32, 136–139.[CrossRef]
    [Google Scholar]
  17. Jordan, D. C. ( 1984; ). Family III. Rhizobiaceae Conn 1938. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 234–235. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  18. Kuykendall, L. D., Saxena, B., Devine, T. E. & Udell, S. E. ( 1992; ). Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38, 501–505.[CrossRef]
    [Google Scholar]
  19. Laguerre, G., Allard, M. R., Revoy, F. & Amarger, N. ( 1994; ). Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60, 56–63.
    [Google Scholar]
  20. Laguerre, G., Mavingui, P., Allard, M. R., Charnay, M. P., Louvrier, P., Mazurier, S. I., Rigottier-Gois, L. & Amarger, N. ( 1996; ). Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62, 2029–2036.
    [Google Scholar]
  21. Ludwig, W. & Schleifer, K. H. ( 1994; ). Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15, 155–173.[CrossRef]
    [Google Scholar]
  22. Menna, P. ( 2005; ). Filogenia de rizóbios utilizados em inoculantes comerciais brasileiros, com base no sequenciamento do gene ribossomal 16S. MSc thesis, Universidade Estadual de Londrina-Depto de Microbiologia, Londrina, Brazil (in Portuguese).
  23. Milagre, S. T. ( 2003; ). Análise de estabilidade de cluster em uma coleção brasileira de bactérias diazotróficas do gênero Bradyrhizobium. MSc thesis, Universidade Estadual de Londrina-Depto de Engenharia Elétrica, Londrina, Brazil (in Portuguese).
  24. Molouba, F., Lorquin, J., Willems, A., Hoste, B., Giraud, E., Dreyfus, B., Gillis, M., de Lajudie, P. & Masson-Boivin, C. ( 1999; ). Photosynthetic bradyrhizobia from Aeschynomene spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group. Appl Environ Microbiol 65, 3084–3094.
    [Google Scholar]
  25. Moreira, F. M. S. ( 1991; ). Caracterização de estirpes de rizóbio isoladas de espécies florestais pertencentes a diversos grupos de divergência de Leguminosae introduzidas ou nativas da Amazônia e Mata Atlântica. PhD thesis, Universidade Federal Rural do Rio de Janeiro-Depto de Solos, Seropédica, Brazil (in Portuguese).
  26. Moreira, F. M. S. ( 2000; ). Biodiversity of rhizobia from a wide range of forest leguminosae species in Brazil. In Nitrogen Fixation: from Molecules to Crop Productivity, pp. 181–182. Edited by F. O. Pedrosa, M. Hungria, M. G. Yates & W. E. Newton. Dordrecht: Kluwer Academic.
  27. Moreira, F. M. S., Gillis, M., Pot, B., Kersters, K. & Franco, A. A. ( 1993; ). Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. Syst Appl Microbiol 16, 135–146.[CrossRef]
    [Google Scholar]
  28. Moreira, F. M. S., Haukka, K. & Young, J. P. W. ( 1998; ). Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol Ecol 7, 889–895.[CrossRef]
    [Google Scholar]
  29. Nishi, C. Y. M., Boddey, L. H., Vargas, M. A. T. & Hungria, M. ( 1996; ). Morphological, physiological and genetic characterization of two new Bradyrhizobium strains recommended as Brazilian commercial inoculants for the soybean. Symbiosis 20, 147–162.
    [Google Scholar]
  30. Norris, D. O. ( 1965; ). Acid production by Rhizobium: a unifying concept. Plant Soil 22, 143–166.[CrossRef]
    [Google Scholar]
  31. Olsen, G. J. & Woese, C. R. ( 1993; ). Ribosomal RNA: a key to phylogeny. FASEB J 7, 113–123.
    [Google Scholar]
  32. Oyaizu, H., Naruhashi, N. & Gamou, T. ( 1992; ). Molecular methods of analysing bacterial diversity: the case of rhizobia. Biodivers Conserv 1, 237–249.[CrossRef]
    [Google Scholar]
  33. Parker, M. A. & Lunk, A. ( 2000; ). Relationships of bradyrhizobia from Platypodium and Machaerium (Papilionoideae: tribe Dalbergieae) on Barro Colorado Island, Panama. Int J Syst Evol Microbiol 50, 1179–1186.[CrossRef]
    [Google Scholar]
  34. Polhill, R. M. & Raven, P. H. ( 1981; ). Advances in Legume Systematics. Kew, UK: Royal Botanic Gardens.
  35. Provorov, N. A. & Vorob'ev, N. I. ( 2000; ). Evolutionary genetics of nodule bacteria: molecular and populational aspects. Russ J Genet 36, 1323–1335.[CrossRef]
    [Google Scholar]
  36. Qian, J., Kwon, S. W. & Parker, M. A. ( 2003; ). rRNA and nifD phylogeny of Bradyrhizobium from sites across the Pacific Basin. FEMS Microbiol Lett 219, 159–165.[CrossRef]
    [Google Scholar]
  37. Rivas, R., Willems, A., Palomo, J. L., García-Benavides, P., Mateos, P. F., Martínez-Molina, E., Gillis, M. & Velázquez, E. ( 2004; ). Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol 54, 1271–1275.[CrossRef]
    [Google Scholar]
  38. Sneath, P. H. A. & Sokal, R. R. ( 1973; ). Numerical Taxonomy. San Francisco: W. H. Freeman & Co.
  39. So, R. B., Ladha, J. K. & Young, J. P. W. ( 1994; ). Photosynthetic symbionts of Aeschynomene spp. form a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. Int J Syst Bacteriol 44, 392–403.[CrossRef]
    [Google Scholar]
  40. Staley, J. T. & Krieg, N. R. ( 1984; ). Classification of procaryotic organisms: an overview. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 1–4. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  41. Stowers, M. D. & Eaglesham, A. R. J. ( 1983; ). A stem-nodulating Rhizobium with physiological characteristics of both fast and slow growers. J Gen Microbiol 129, 3651–3655.
    [Google Scholar]
  42. Terefework, Z., Nick, G., Suomalainen, S., Paulin, L. & Lindström, K. ( 1998; ). Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria. Int J Syst Bacteriol 48, 349–356.[CrossRef]
    [Google Scholar]
  43. Tesfaye, M. & Holl, F. B. ( 1998; ). Group-specific differentiation of Rhizobium from clover species by PCR amplification of 23S rDNA sequences. Can J Microbiol 44, 1102–1105.[CrossRef]
    [Google Scholar]
  44. Tesfaye, M., Petersen, D. J. & Holl, F. B. ( 1997; ). Comparison of partial 23S rDNA sequences from Rhizobium species. Can J Microbiol 43, 526–533.[CrossRef]
    [Google Scholar]
  45. Urtz, B. E. & Elkan, G. H. ( 1996; ). Genetic diversity among Bradyrhizobium isolates that effectively nodulate peanut (Arachis hypogaea). Can J Microbiol 42, 1121–1130.[CrossRef]
    [Google Scholar]
  46. van Berkum, P. & Fuhrmann, J. J. ( 2000; ). Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol 50, 2165–2172.[CrossRef]
    [Google Scholar]
  47. van Berkum, P., Terefework, Z., Paulin, L., Suomalainem, S., Lindström, K. & Eardly, B. D. ( 2003; ). Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185, 2988–2998.[CrossRef]
    [Google Scholar]
  48. van Rossum, D., Schuurmans, F. P., Gillis, M., Muyotcha, A., van Verseveld, H. W., Stouthamer, A. H. & Boogerd, F. C. ( 1995; ). Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl Environ Microbiol 61, 1599–1609.
    [Google Scholar]
  49. Vincent, J. M. ( 1970; ). Manual for the Practical Study of Root Nodule Bacteria. Oxford: Blackwell.
  50. Vinuesa, P., Rademaker, J. L. W., de Bruijn, F. J. & Werner, D. ( 1998; ). Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol 64, 2096–2104.
    [Google Scholar]
  51. Vinuesa, P., León-Barrios, M., Silva, C., Willems, A., Jarabo-Lorenzo, A., Pérez-Galdona, R., Werner, D. & Martínez-Romero, E. ( 2005a; ). Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55, 569–575.[CrossRef]
    [Google Scholar]
  52. Vinuesa, P., Silva, C., Werner, D. & Martinez-Romero, E. ( 2005b; ). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34, 29–54.[CrossRef]
    [Google Scholar]
  53. Wang, E. T. & Martínez-Romero, E. ( 2000; ). Phylogeny of root- and stem-nodule bacteria associated with legumes. In Prokaryotic Nitrogen Fixation: a Model System for Analysis of a Biological Process, pp. 177–186. Edited by E. W. Triplett. Wymondham, UK: Horizon Scientific Press.
  54. Wang, E. T., van Berkum, P., Sui, X. H., Beyene, D., Chen, W. X. & Martínez-Romero, E. ( 1999; ). Diversity of rhizobia associated with Amorpha fruticosa from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49, 51–65.[CrossRef]
    [Google Scholar]
  55. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  56. Willems, A., Coopman, R. & Gillis, M. ( 2001; ). Comparison of sequence analysis of 16S–23S rDNA spacer regions, AFLP analysis and DNA–DNA hybridizations in Bradyrhizobium. Int J Syst Evol Microbiol 51, 623–632.
    [Google Scholar]
  57. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  58. Xu, L. M., Ge, C., Cui, Z., Li, J. & Fan, H. ( 1995; ). Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45, 706–711.[CrossRef]
    [Google Scholar]
  59. Yanagi, M. & Yamasato, K. ( 1993; ). Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 197, 115–120.
    [Google Scholar]
  60. Yao, Z. Y., Kan, F. L., Wang, E. T., Wei, G. H. & Chen, W. X. ( 2002; ). Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52, 2219–2230.[CrossRef]
    [Google Scholar]
  61. Young, J. P. W., Downer, H. L. & Eardly, B. D. ( 1991; ). Phylogeny of the phototropic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173, 2271–2277.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02917-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02917-0
Loading

Data & Media loading...

[PDF file of Supplementary Tables S1 and S2](34 KB)

PDF

[PDF file of Supplementary Figs S1-S3](70 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error