1887

Abstract

Phylogenetic positions, and genotypic and phenotypic characteristics of three novel methylotrophic isolates, strains 301, 30S and SIP3-4, from sediment of Lake Washington, Seattle, USA, are described. The strains were restricted facultative methylotrophs capable of growth on single carbon compounds (methylamine and methanol) in addition to a limited range of multicarbon compounds. All strains used the -methylglutamate pathway for methylamine oxidation. Strain SIP3-4 possessed the canonical (MxaFI) methanol dehydrogenase, but strains 301 and 30S did not. All three strains used the ribulose monophosphate pathway for C1 assimilation. The major fatty acids in the three strains were C and Cω7. The DNA G+C contents of strains 301 and SIP3-4 were 42.6 and 54.6 mol%, respectively. Based on 16S rRNA gene sequence phylogeny and the relevant phenotypic characteristics, strain SIP3-4 was assigned to the previously defined species . Strains 301 and 30S were closely related to each other (100 % 16S rRNA gene sequence similarity) and shared 96.6 % 16S rRNA gene sequence similarity with a previously described isolate, JLW8. Based on significant genomic and phenotypic divergence with the latter, strains 301 and 30S represent a novel species within the genus , for which the name sp. nov. is proposed; the type strain is 301 ( = VKM B-2679 = JCM 17579). An emended description of the genus is provided.

Funding
This study was supported by the:
  • NSF (Award MCB-0842686 and MCB-00604269)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029165-0
2012-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/106.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029165-0&mimeType=html&fmt=ahah

References

  1. Bergmeyer H. U., Gawehn K., Grassl M. 1974; Enzymes as biochemical reagents. Glucose oxidase. In Methods of Enzymatic Analysis, 2nd edn. vol. I pp. 457–458 Edited by Bergmeyer H. U. New York: Academic Press;
    [Google Scholar]
  2. Chistoserdova L., Lapidus A., Han C., Goodwin L., Saunders L., Brettin T., Tapia R., Gilna P., Lucas S. et al. other authors 2007; Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol 189:4020–4027 [View Article][PubMed]
    [Google Scholar]
  3. Doronina N. V., Ivanova E. G., Trotsenko Y. A. 2005; Phylogenetic position and emended description of the genus Methylovorus . Int J Syst Evol Microbiol 55:903–906 [View Article][PubMed]
    [Google Scholar]
  4. Felsenstein J. 2004 Inferring Phylogenies Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  5. Giovannoni S. J., Hayakawa D. H., Tripp H. J., Stingl U., Givan S. A., Cho J.-C., Oh H.-M., Kitner J. B., Vergin K. L., Rappé M. S. 2008; The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782 [View Article][PubMed]
    [Google Scholar]
  6. Govorukhina N. I., Trotsenko Y. A. 1991; Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int J Syst Bacteriol 41:158–162 [CrossRef]
    [Google Scholar]
  7. Harder W., Attwood M. M., Quayle J. R. 1973; Methanol assimilation by Hyphomicrobium sp.. J Gen Microbiol 78:155–163 [CrossRef]
    [Google Scholar]
  8. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402 [View Article][PubMed]
    [Google Scholar]
  9. Jenkins O., Jones D. 1987; Taxonomic studies on some Gram-negative methylotrophic bacteria. J Gen Microbiol 133:453–473
    [Google Scholar]
  10. Kalyuzhnaya M. G., Lidstrom M. E., Chistoserdova L. 2004; Utility of environmental primers targeting ancient enzymes: methylotroph detection in Lake Washington. Microb Ecol 48:463–472 [View Article][PubMed]
    [Google Scholar]
  11. Kalyuzhnaya M. G., Bowerman S., Lara J. C., Lidstrom M. E., Chistoserdova L. 2006; Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae . Int J Syst Evol Microbiol 56:2819–2823 [View Article][PubMed]
    [Google Scholar]
  12. Kalyuzhnaya M. G., Hristova K. R., Lidstrom M. E., Chistoserdova L. 2008a; Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190:3817–3823 [View Article][PubMed]
    [Google Scholar]
  13. Kalyuzhnaya M. G., Lapidus A., Ivanova N., Copeland A. C., McHardy A. C., Szeto E., Salamov A., Grigoriev I. V., Suciu D. et al. other authors 2008b; High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034 [View Article][PubMed]
    [Google Scholar]
  14. Kalyuzhnaya M. G., Martens-Habbena W., Wang T., Stolyar S. M., Hackett M., Stahl D. A., Lidstrom M. E., Chistoserdova L. 2009; Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1:385–392 [View Article]
    [Google Scholar]
  15. Latypova E., Yang S., Wang Y. S., Wang T., Chavkin T. A., Hackett M., Schäfer H., Kalyuzhnaya M. G. 2010; Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol Microbiol 75:426–439 [View Article][PubMed]
    [Google Scholar]
  16. Lykidis A., Pérez-Pantoja D., Ledger T., Mavromatis K., Anderson I. J., Ivanova N. N., Hooper S. D., Lapidus A., Lucas S. et al. other authors 2010; The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS ONE 5:e9729 [View Article][PubMed]
    [Google Scholar]
  17. Miller J. A., Kalyuzhnaya M. G., Noyes E., Lara J. C., Lidstrom M. E., Chistoserdova L. 2005; Labrys methylaminiphilus sp. nov., a novel facultatively methylotrophic bacterium from a freshwater lake sediment. Int J Syst Evol Microbiol 55:1247–1253 [View Article][PubMed]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029165-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029165-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error