1887

Abstract

In recent years, the planctomycetes have been recognized as a phylum of environmentally important bacteria with habitats ranging from soil and freshwater to marine ecosystems. The planctomycetes form an independent phylum within the bacterial domain, whose exact phylogenetic position remains controversial. With the completion of sequencing of the genome of ‘’ SH 1, it is now possible to re-evaluate the phylogeny of the planctomycetes based on multiple genes and genome trees in addition to single genes like the 16S rRNA or the elongation factor Tu. Here, evidence is presented based on the concatenated amino acid sequences of ribosomal proteins and DNA-directed RNA polymerase subunits from ‘’ SH 1 and more than 90 other publicly available genomes that support a relationship of the and the . Affiliation of ‘’ SH 1 and the was reasonably stable regarding site selection since, during stepwise filtering of less-conserved sites from the alignments, it was only broken when rigorous filtering was applied. In a few cases, ‘’ SH 1 shifted to a deep branching position adjacent to the / clade. These findings are in agreement with recent publications, but the deep branching position was dependent on site selection and treeing algorithm and thus not stable. A genome tree calculated from normalized scores did not confirm a close relationship of ‘’ SH 1 and the , but also indicated that the do not emerge at the very root of the . Therefore, these analyses rather contradict a deep branching position of the within the bacterial domain and reaffirm their earlier proposed relatedness to the .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02913-0
2004-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540791.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02913-0&mimeType=html&fmt=ahah

References

  1. Bocchetta, M., Gribaldo, S., Sanangelantoni, A. & Cammarano, P. ( 2000; ). Phylogenetic depth of the bacterial genera Aquifex and Thermotoga inferred from analysis of ribosomal protein, elongation factor, and RNA polymerase subunit sequences. J Mol Evol 50, 366–380.
    [Google Scholar]
  2. Bomar, D., Giovannoni, S. & Stackebrandt, E. ( 1988; ). A unique type of eubacterial 5S rRNA in members of the order Planctomycetales. J Mol Evol 27, 121–125.[CrossRef]
    [Google Scholar]
  3. Brochier, C. & Philippe, H. ( 2002; ). Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417, 244.[CrossRef]
    [Google Scholar]
  4. Brochier, C., Bapteste, E., Moreira, D. & Philippe, H. ( 2002; ). Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 18, 1–5.[CrossRef]
    [Google Scholar]
  5. Brown, W. J. & Rockey, D. D. ( 2000; ). Identification of an antigen localized to an apparent septum within dividing chlamydiae. Infect Immun 68, 708–715.[CrossRef]
    [Google Scholar]
  6. Clarke, G. D. P., Beiko, R. G., Ragan, M. A. & Charlebois, R. L. ( 2002; ). Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized blastp scores. J Bacteriol 184, 2072–2080.[CrossRef]
    [Google Scholar]
  7. Dalsgaard, T. & Thamdrup, B. ( 2002; ). Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol 68, 3802–3808.[CrossRef]
    [Google Scholar]
  8. Daubin, V., Gouy, M. & Perrière, G. ( 2001; ). Bacterial molecular phylogeny using supertree approach. Genome Inform Ser Workshop Genome Inform 12, 155–164.
    [Google Scholar]
  9. Daubin, V., Moran, N. A. & Ochman, H. ( 2003; ). Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832.[CrossRef]
    [Google Scholar]
  10. DeLong, E. F. ( 1993; ). Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38, 924–934.[CrossRef]
    [Google Scholar]
  11. Di Giulio, M. ( 2003; ). The ancestor of the Bacteria domain was a hyperthermophile. J Theor Biol 224, 277–283.[CrossRef]
    [Google Scholar]
  12. Forterre, P., Brochier, C. & Philippe, H. ( 2002; ). Evolution of the Archaea. Theor Pop Biol 61, 409–422.[CrossRef]
    [Google Scholar]
  13. Fuerst, J. A. ( 1995; ). The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141, 1493–1506.[CrossRef]
    [Google Scholar]
  14. Fuerst, J. A., Gwilliam, H. G., Lindsay, M., Lichanska, A., Belcher, C., Vickers, J. E. & Hugenholtz, P. ( 1997; ). Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. Appl Environ Microbiol 63, 254–262.
    [Google Scholar]
  15. Gade, D., Schlesner, H., Glöckner, F. O., Amann, R., Pfeiffer, S. & Thomm, M. ( 2004; ). Identification of planctomycetes with order-, genus- and strain-specific 16S rRNA-targeted probes. Microb Ecol (in press). Published online ahead of print 4 March 2004 as DOI 10.1007/s00248-003-1016-9
    [Google Scholar]
  16. Garrity, G. M., Johnson, K. L., Bell, J. & Searles, D. B. ( 2002; ). Taxonomic outline of the prokaryotes. In Bergey's Manual of Systematic Bacteriology, 2nd edn, release 3.0. July 2002. http://dx.doi.org/10.1007/bergeysoutline200210
  17. Ghuysen, J. M. & Goffin, C. ( 1999; ). Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob Agents Chemother 43, 2339–2344.
    [Google Scholar]
  18. Giovannoni, S. J., Godchaux, W., III, Schabtach, E. & Castenholz, R. W. ( 1987; ). Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium from hot springs. J Bacteriol 169, 2702–2707.
    [Google Scholar]
  19. Glöckner, F. O., Kube, M., Bauer, M. & 11 other authors ( 2003; ). Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 100, 8298–8303.[CrossRef]
    [Google Scholar]
  20. Gribaldo, S. & Philippe, H. ( 2002; ). Ancient phylogenetic relationships. Theor Pop Biol 61, 391–408.[CrossRef]
    [Google Scholar]
  21. Gupta, R. S. ( 2001; ). The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4, 187–202.[CrossRef]
    [Google Scholar]
  22. Gupta, R. S. & Griffiths, E. ( 2002; ). Critical issues in bacterial phylogeny. Theor Pop Biol 61, 423–434.[CrossRef]
    [Google Scholar]
  23. Hansmann, S. & Martin, W. ( 2000; ). Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int J Syst Evol Microbiol 50, 1655–1663.[CrossRef]
    [Google Scholar]
  24. Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R. ( 2003; ). The genetic core of the universal ancestor. Genome Res 13, 407–412.[CrossRef]
    [Google Scholar]
  25. Hatch, T. P. ( 1996; ). Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J Bacteriol 178, 1–5.
    [Google Scholar]
  26. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  27. Jain, R., Rivera, M. C. & Lake, J. A. ( 1999; ). Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 96, 3801–3806.[CrossRef]
    [Google Scholar]
  28. Jenkins, C. & Fuerst, J. A. ( 2001; ). Phylogenetic analysis of evolutionary relationships of the planctomycete division of the domain Bacteria based on amino acid sequences of elongation factor Tu. J Mol Evol 52, 405–418.
    [Google Scholar]
  29. Johnson, J. M., Mason, K., Moallemi, C., Xi, H., Somaroo, S. & Huang, E. S. ( 2003; ). Protein family annotation in a multiple alignment viewer. Bioinformatics 19, 544–545.[CrossRef]
    [Google Scholar]
  30. Karunakaran, K. P., Noguchi, Y., Read, T. D., Cherkasov, A., Kwee, J., Shen, C., Nelson, C. C. & Brunham, R. C. ( 2003; ). Molecular analysis of the multiple GroEL proteins of Chlamydiae. J Bacteriol 185, 1958–1966.[CrossRef]
    [Google Scholar]
  31. Kerger, D., Mancuso, A., Nichols, P. D., White, D. C., Langworthy, T., Sittig, M., Schlesner, H. & Hirsch, P. ( 1988; ). The budding bacteria, Pirellula and Planctomyces, with atypical 16S rRNA and absence of peptidoglycan, show eubacterial phospholipids und uniquely high proportions of long chain beta-hydroxy fatty acids in the lipopolysaccharide lipid A. Arch Microbiol 149, 255–260.[CrossRef]
    [Google Scholar]
  32. König, E., Schlesner, H. & Hirsch, P. ( 1984; ). Cell wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138, 200–205.[CrossRef]
    [Google Scholar]
  33. Liesack, W., König, H., Schlesner, H. & Hirsch, P. ( 1986; ). Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirellula/Planctomyces group. Arch Microbiol 145, 361–366.[CrossRef]
    [Google Scholar]
  34. Liesack, W., Söller, R., Steward, T., Haas, H., Giovannoni, S. & Stackebrandt, E. ( 1992; ). The influence of tachytelically (rapidly) evolving sequences on the topology of phylogenetic trees – intrafamily relationships and the phylogenetic position of Planctomycetaceae as revealed by comparative analysis of 16S ribosomal RNA sequences. Syst Appl Microbiol 15, 357–362.[CrossRef]
    [Google Scholar]
  35. Lindsay, M. R., Webb, R. I. & Fuerst, J. A. ( 1997; ). Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology 143, 739–748.[CrossRef]
    [Google Scholar]
  36. Lindsay, M. R., Webb, R. I., Strous, M., Jetten, M. S., Butler, M. K., Forde, R. J. & Fuerst, J. A. ( 2001; ). Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175, 413–429.[CrossRef]
    [Google Scholar]
  37. Matte-Tailliez, O., Brochier, C., Forterre, P. & Philippe, H. ( 2002; ). Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol 19, 631–639.[CrossRef]
    [Google Scholar]
  38. Meyer, F., Goesmann, A., McHardy, A. C. & 8 other authors ( 2003; ). GenDB – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31, 2187–2195.[CrossRef]
    [Google Scholar]
  39. Miskin, I. P., Farrimond, P. & Head, I. M. ( 1999; ). Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145, 1977–1987.[CrossRef]
    [Google Scholar]
  40. Nelson, K. E., Paulsen, I. T., Heidelberg, J. F. & Fraser, C. M. ( 2000; ). Status of genome projects for nonpathogenic bacteria and archaea. Nat Biotechnol 18, 1049–1054.[CrossRef]
    [Google Scholar]
  41. Nesbo, C. L., Boucher, Y. & Doolittle, W. F. ( 2001; ). Defining the core of nontransferable prokaryotic genes: the euryarchaeal core. J Mol Evol 53, 340–350.[CrossRef]
    [Google Scholar]
  42. Philippe, H. & Laurent, J. ( 1998; ). How good are deep phylogenetic trees? Curr Opin Genet Dev 8, 616–623.[CrossRef]
    [Google Scholar]
  43. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  44. Schlesner, H. ( 1994; ). The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp. and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17, 135–145.[CrossRef]
    [Google Scholar]
  45. Schlesner, H., Rendsmann, C., Tindall, B. J., Gade, D., Rabus, R., Pfeiffer, S. & Hirsch, P. ( 2004; ). Taxonomic heterogeneity within the Planctomycetales as derived by DNA–DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov., and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54 (in press).
    [Google Scholar]
  46. Schmid, M., Schmitz-Esser, S., Jetten, M. & Wagner, W. ( 2001; ). 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3, 450–459.[CrossRef]
    [Google Scholar]
  47. Stackebrandt, E., Ludwig, W., Schubert, W., Klink, F., Schlesner, H., Roggentin, T. & Hirsch, P. ( 1984; ). Molecular genetic evidence for early evolutionary origin of budding peptidoglycan-less eubacteria. Nature 307, 735–737.[CrossRef]
    [Google Scholar]
  48. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  49. Strous, M., Fuerst J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., van de pas-Schoonen, K. T., Webb, R., Kuenen, J. G. & Jetten, M. S. M. ( 1999; ). Missing lithotroph identified as new planctomycete. Nature 400, 446–449.[CrossRef]
    [Google Scholar]
  50. Sugita, M., Sugishita, H., Fujishiro, T., Tsuboi, M., Sugita, C., Endo, T. & Sugiura, M. ( 1997; ). Organization of a large gene cluster encoding ribosomal proteins in the cyanobacterium Synechococcus sp. strain PCC 6301: comparison of gene clusters among cyanobacteria, eubacteria and chloroplast genomes. Gene 195, 73–79.[CrossRef]
    [Google Scholar]
  51. Tekaia, F., Lazcano, A. & Dujon, B. ( 1999; ). The genomic tree as revealed from whole proteome comparisons. Genome Res 9, 550–557.
    [Google Scholar]
  52. Vergin, K. L., Urbach, E., Stein, J. L., DeLong, E. F., Lanoil, B. D. & Giovannoni, S. J. ( 1998; ). Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. Appl Environ Microbiol 64, 3075–3078.
    [Google Scholar]
  53. Wang, J., Jenkins, C., Webb, R. I. & Fuerst, J. A. ( 2002; ). Isolation of Gemmata-like and Isosphaera-like bacteria from soil and freshwater. Appl Environ Microbiol 68, 417–422.[CrossRef]
    [Google Scholar]
  54. Ward, N., Rainey, F. A., Stackebrandt, E. & Schlesner, H. ( 1995; ). Unraveling the extent of diversity within the order Planctomycetales. Appl Environ Microbiol 61, 2270–2275.
    [Google Scholar]
  55. Ward, N. L., Rainey, F. A., Hedlund, B. P., Staley, J. T., Ludwig, W. & Stackebrandt, E. ( 2000; ). Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia: 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny. Int J Syst Evol Microbiol 50, 1965–1972.[CrossRef]
    [Google Scholar]
  56. Ward-Rainey, N., Rainey, F. A., Wellington, E. M. H. & Stackebrandt, E. ( 1996; ). Physical map of the genome of Planctomyces limnophilus, a representative of the phylogenetically distinct planctomycete lineage. J Bacteriol 178, 1908–1913.
    [Google Scholar]
  57. Ward-Rainey, N., Rainey, F. A. & Stackebrandt, E. ( 1997; ). The presence of a dnaK (HSP70) multigene family in members of the orders Planctomycetales and Verrucomicrobiales. J Bacteriol 179, 6360–6366.
    [Google Scholar]
  58. Weisburg, W. G., Hatch, T. P. & Woese, C. R. ( 1986; ). Eubacterial origin of chlamydiae. J Bacteriol 167, 570–574.
    [Google Scholar]
  59. Williams, T. L. & Moret, B. M. E. ( 2003; ). An investigation of phylogenetic likelihood methods. In Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering (BIBE ‘03), pp. 79–86. Los Alamitos, CA: IEEE Press. http://www.computer.org/proceedings/bibe/1907/1907toc.htm
  60. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  61. Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L. & Koonin, E. V. ( 2001; ). Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1, 8.[CrossRef]
    [Google Scholar]
  62. Wolf, Y. I., Rogozin, I. B., Grishin, N. V. & Koonin, E. V. ( 2002; ). Genome trees and the tree of life. Trends Genet 18, 472–479.[CrossRef]
    [Google Scholar]
  63. Yap, W. H., Zhang, Z. & Wang, Y. ( 1999; ). Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181, 5201–5209.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02913-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02913-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 791 - 801

Details of strains used in tree construction. [PDF](135 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error