1887

Abstract

Three Gram-negative, aerobic, rod-shaped bacterial strains were isolated, from the pollen of Japanese flowers, as producers of xylitol; these strains were subjected to a polyphasic taxonomic study. Phylogenetic analyses of the 16S rRNA gene sequences demonstrated that these three isolates formed a new cluster within a group of acetic acid bacteria in the -. The characteristics of the three isolates were as follows: (i) their predominant quinone was Q-10; (ii) their cellular fatty acid profile contained major amounts of 2-hydroxy acids and an unsaturated straight-chain acid (C 7); and (iii) their DNA G+C contents were in the range 51·9–52·3 mol%, which is around the lower limit of the reported range for the genera of acetic acid bacteria. The negligible or very weak productivity of acetic acid from ethanol and the osmophilic growth properties distinguished these strains from other acetic acid bacteria. The unique phylogenetic and phenotypic characteristics suggest that the three isolates should be classified within a novel genus and species with the proposed name gen. nov., sp. nov. The type strain is strain S-877 (=AJ 13480=JCM 12116=DSM 15669).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02911-0
2004-11-01
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542263.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02911-0&mimeType=html&fmt=ahah

References

  1. Asai T., Iizuka H., Komagata K. 1964; The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10:95–126 [CrossRef]
    [Google Scholar]
  2. De Ley J., Frateur J. 1974; Genus Acetobacter Beijerinck 1898, 215AL. In Bergey's Manual of Determinative Bacteriology . , 8th edn. pp  276–278 Edited by Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
  3. De Ley J., Swings J., Gosselé F. 1984; Genus I. Acetobacter Beijerinck 1898, 215AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  268–274 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogeny: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Franke I. H., Fegan M., Hayward C., Leonard G., Stackebrandt E., Sly L. I. 1999; Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49:1681–1693 [CrossRef]
    [Google Scholar]
  6. Gillis M., Kersters K., Hoste B., Janssens D., Kroppenstedt R. M., Stephan M. P., Teixeira K. R. S., Döbereiner J., De Ley J. 1989; Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364 [CrossRef]
    [Google Scholar]
  7. Hiraishi A., Hoshino Y., Kitamura H. 1984; Isoprenoid quinone composition in the classification of Rhodospirillaceae . J Gen Appl Microbiol 30:197–210 [CrossRef]
    [Google Scholar]
  8. Hiraishi A., Hoshino Y., Satoh T. 1991; Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “ Rhodocyclus gelatinosus -like” group. Arch Microbiol 155:330–336
    [Google Scholar]
  9. Iizuka T., Yamanaka S., Nishiyama T., Hiraishi A. 1998; Isolation and phylogenetic analysis of aerobic copiotrophic ultramicrobacteria from urban soil. J Gen Appl Microbiol 44:75–84 [CrossRef]
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  11. Lisdiyanti P., Kawasaki H., Widyastuti Y., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K. 2002; Kozakia baliensis gen. nov., sp. nov. a novel acetic acid bacterium in the α - Proteobacteria . Int J Syst Evol Microbiol 52:813–818 [CrossRef]
    [Google Scholar]
  12. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  14. Sievers M., Ludwig W., Teuber M. 1994; Phylogenetic positioning of Acetobacter , Gluconobacter , Rhodopila and Acidophilum species as a branch of acidophilic bacteria in the α -subclass of Proteobacteria based on 16S rDNA sequences. Syst Appl Microbiol 17:189–196 [CrossRef]
    [Google Scholar]
  15. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  16. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  17. Urakami T., Tamaoka J., Suzuki K., Komagata K. 1989; Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 39:50–55 [CrossRef]
    [Google Scholar]
  18. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  19. Yamada Y., Okada Y., Kondo K. 1976; Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J Gen Appl Microbiol 22:237–245 [CrossRef]
    [Google Scholar]
  20. Yamada Y., Nunoda M., Ishikawa T., Tahara Y. 1981; The cellular fatty acid composition in acetic acid bacteria. J Gen Appl Microbiol 27:405–417 [CrossRef]
    [Google Scholar]
  21. Yamada Y., Katsura K., Kawasaki H., Widyastuti Y., Saono S., Seki T., Uchimura T., Komagata K. 2000; Asaia bogorensis gen. nov., sp. nov. an unusual acetic acid bacterium in the α - Proteobacteria . Int J Syst Evol Microbiol 50:823–829 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02911-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02911-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error