sp. nov. and sp. nov., isolated from water Free

Abstract

Three enterococcal isolates, CCRI-16620, CCRI-16986 and CCRI-16985, originating from water were characterized using morphological, biochemical and molecular taxonomic methods. 16S rRNA gene sequence analysis classified all three strains in the species group. The phylogenetic tree of 16S rRNA gene sequences showed that the three isolates form two separate branches. The first branch is represented by strains CCRI-16620 and CCRI-16986 and the second branch by strain CCRI-16985. Further sequence analysis of the housekeeping genes (encoding RNA polymerase α subunit), (phenylalanyl-tRNA synthase), (elongation factor Tu) and (ATP synthase β-subunit) as well as the results of amplified fragment length polymorphism (AFLP) DNA fingerprinting and DNA–DNA hybridization experiments confirmed the distinct status of these strains. Moreover, biochemical tests allowed phenotypic differentiation of the strains from the other species of the species group. On the basis of the results obtained, the names sp. nov. (type strain CCRI-16986 = CCUG 59304 = DSM 23328 = LMG 26304) and sp. nov. (type strain CCRI-16985 = CCUG 59306 = DSM 23327 = LMG 26306) are proposed for the two hitherto undescribed species.

Funding
This study was supported by the:
  • Canadian Institutes of Health Research (CIHR) (Award PA-15586)
  • Canadian Foundation for Innovation (CFI) (Award FCI-5251)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029033-0
2012-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1314.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029033-0&mimeType=html&fmt=ahah

References

  1. Angeletti S., Lorino G., Gherardi G., Battistoni F., De Cesaris M., Dicuonzo G. 2001; Routine molecular identification of enterococci by gene-specific PCR and 16S ribosomal DNA sequencing. J Clin Microbiol 39:794–797 [View Article][PubMed]
    [Google Scholar]
  2. Bernard K.-A., Bellefeuille M., Ewan E. P. 1991; Cellular fatty acid composition as an adjunct to the identification of asporogenous, aerobic gram-positive rods. J Clin Microbiol 29:83–89[PubMed]
    [Google Scholar]
  3. Bernard K.-A., Shuttleworth L., Munro C., Forbes-Faulkner J. C., Pitt D., Norton J. H., Thomas A. D. 2002; Propionibacterium australiense sp. nov. derived from granulomatous bovine lesions. Anaerobe 8:41–47 [View Article]
    [Google Scholar]
  4. Carvalho M. G., Steigerwalt A. G., Morey R. E., Shewmaker P. L., Teixeira L. M., Facklam R. R. 2004; Characterization of three new enterococcal species, Enterococcus sp. nov. CDC PNS-E1, Enterococcus sp. nov. CDC PNS-E2, and Enterococcus sp. nov. CDC PNS-E3, isolated from human clinical specimens. J Clin Microbiol 42:1192–1198 [View Article][PubMed]
    [Google Scholar]
  5. Carvalho M. G., Shewmaker P. L., Steigerwalt A. G., Morey R. E., Sampson A. J., Joyce K., Barrett T. J., Teixeira L. M., Facklam R. R. 2006; Enterococcus caccae sp. nov., isolated from human stools. Int J Syst Evol Microbiol 56:1505–1508 [View Article][PubMed]
    [Google Scholar]
  6. Carvalho M. G., Steigerwalt A. G., Morey R. E., Shewmaker P. L., Falsen E., Facklam R. R., Teixeira L. M. 2008; Designation of the provisional new enterococcus species CDC PNS-E2 as Enterococcus sanguinicola sp. nov., isolated from human blood, and identification of a strain previously named Enterococcus CDC PNS-E1 as Enterococcus italicus Fortina, Ricci, Mora, and Manachini 2004. J Clin Microbiol 46:3473–3476 [View Article][PubMed]
    [Google Scholar]
  7. Chimetto L. A., Cleenwerck I., Brocchi M., Willems A., De Vos P., Thompson F. L. 2011; Marinomonas brasilensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas basaltis as a later heterotypic synonym of Marinomonas communis . Int J Syst Evol Microbiol 61:1170–1175 [View Article][PubMed]
    [Google Scholar]
  8. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  9. d’Azevedo P. A., Dias C. A. G., Gonçalves A. L. S., Rowe F., Teixeira L. M. 2001; Evaluation of an automated system for the identification and antimicrobial susceptibility testing of enterococci. Diagn Microbiol Infect Dis 40:157–161 [View Article][PubMed]
    [Google Scholar]
  10. Devriese L. A., Pot B. 1995; The genus Enterococcus . In The Genera of Lactic Acid Bacteria pp. 327–367 Edited by Wood B. J. B., Holzapfel W. H. London: Blackie Academic & Professional; [View Article]
    [Google Scholar]
  11. Devriese L. A., Vancanneyt M., Descheemaeker P., Baele M., Van Landuyt H. W., Gordts B., Butaye P., Swings J., Haesebrouck F. 2002; Differentiation and identification of Enterococcus durans, E. hirae and E. villorum . J Appl Microbiol 92:821–827 [View Article][PubMed]
    [Google Scholar]
  12. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  13. Facklam R. R., Collins M. D. 1989; Identification of Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol 27:731–734[PubMed]
    [Google Scholar]
  14. Facklam R., Hollis D., Collins M. D. 1989; Identification of gram-positive coccal and coccobacillary vancomycin-resistant bacteria. J Clin Microbiol 27:724–730[PubMed]
    [Google Scholar]
  15. Gevers D., Huys G., Swings J. 2001; Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36 [View Article][PubMed]
    [Google Scholar]
  16. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [View Article]
    [Google Scholar]
  17. Hardie J. M., Whiley R. A. 1997; Classification and overview of the genera Streptococcus and Enterococcus . Soc Appl Bacteriol Symp Ser 26:S11S–11S [View Article][PubMed]
    [Google Scholar]
  18. Iversen C., Lehner A., Mullane N., Bidlas E., Cleenwerck I., Marugg J., Fanning S., Stephan R., Joosten H. 2007; The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 7:64 [View Article][PubMed]
    [Google Scholar]
  19. Jackson C. R., Fedorka-Cray P. J., Barrett J. B. 2004; Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42:3558–3565 [View Article][PubMed]
    [Google Scholar]
  20. Köhler W. 2007; The present state of species within the genera Streptococcus and Enterococcus . Int J Med Microbiol 297:133–150 [View Article][PubMed]
    [Google Scholar]
  21. Miescier J. J., Cabelli V. J. 1982; Enterococci and other microbial indicators in municipal wastewater effluents. J Water Pollut Control Fed 54:1599–1606
    [Google Scholar]
  22. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. 2005; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150 [View Article][PubMed]
    [Google Scholar]
  23. Nemec A., De Baere T., Tjernberg I., Vaneechoutte M., van der Reijden T. J., Dijkshoorn L. 2001; Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 51:1891–1899 [View Article][PubMed]
    [Google Scholar]
  24. Paradis S., Boissinot M., Paquette N., Bélanger S. D., Martel E. A., Boudreau D. K., Picard F. J., Ouellette M., Roy P. H., Bergeron M. G. 2005; Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase β-subunit. Int J Syst Evol Microbiol 55:2013–2025 [View Article][PubMed]
    [Google Scholar]
  25. Picard F. J., Ke D., Boudreau D. K., Boissinot M., Huletsky A., Richard D., Ouellette M., Roy P. H., Bergeron M. G. 2004; Use of tuf sequences for genus-specific PCR detection and phylogenetic analysis of 28 streptococcal species. J Clin Microbiol 42:3686–3695 [View Article][PubMed]
    [Google Scholar]
  26. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  27. Sukontasing S., Tanasupawat S., Moonmangmee S., Lee J.-S., Suzuki K. 2007; Enterococcus camelliae sp. nov., isolated from fermented tea leaves in Thailand. Int J Syst Evol Microbiol 57:2151–2154 [View Article][PubMed]
    [Google Scholar]
  28. Švec P., Devriese L. A., Sedlácek I., Baele M., Vancanneyt M., Haesebrouck F., Swings J., Doškař J. 2001; Enterococcus haemoperoxidus sp. nov. and Enterococcus moraviensis sp. nov., isolated from water. Int J Syst Evol Microbiol 51:1567–1574[PubMed]
    [Google Scholar]
  29. Švec P., Vancanneyt M., Devriese L. A., Naser S. M., Snauwaert C., Lefebvre K., Hoste B., Swings J. 2005a; Enterococcus aquimarinus sp. nov., isolated from sea water. Int J Syst Evol Microbiol 55:2183–2187 [View Article][PubMed]
    [Google Scholar]
  30. Švec P., Vancanneyt M., Koort J., Naser S. M., Hoste B., Vihavainen E., Vandamme P., Swings J., Björkroth J. 2005b; Enterococcus devriesei sp. nov., associated with animal sources. Int J Syst Evol Microbiol 55:2479–2484 [View Article][PubMed]
    [Google Scholar]
  31. Švec P., Vancanneyt M., Sedlácek I., Naser S. M., Snauwaert C., Lefebvre K., Hoste B., Swings J. 2006; Enterococcus silesiacus sp. nov. and Enterococcus termitis sp. nov.. Int J Syst Evol Microbiol 56:577–581 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  33. Tanasupawat S., Sukontasing S., Lee J.-S. 2008; Enterococcus thailandicus sp. nov., isolated from fermented sausage (‘mum’) in Thailand. Int J Syst Evol Microbiol 58:1630–1634 [View Article][PubMed]
    [Google Scholar]
  34. Teixeira L. M., Carvalho M. G. S., Facklam R. R. 2007; Enterococcus. In Manual of Clinical Microbiology, 9th edn. pp. 430–442 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Tyrrell G. J., Turnbull L., Teixeira L. M., Lefebvre J., Carvalho M. G., Facklam R. R., Lovgren M. 2002; Enterococcus gilvus sp. nov. and Enterococcus pallens sp. nov. isolated from human clinical specimens. J Clin Microbiol 40:1140–1145 [View Article][PubMed]
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  37. Xu H.-X., Kawamura Y., Li N., Zhao L., Li T.-M., Li Z.-Y., Shu S., Ezaki T. 2000; A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube. Int J Syst Evol Microbiol 50:1463–1469 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029033-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029033-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed